: g

Generative Al in the Computing Classroom
Symptoms and (Possible) Antidotes

|

fﬂ

u.
T | -
Al g

Brett A. Becker

University College Dublin
e brettbecker.com Slides & Papers Available

e CERGHUCD

https://www.brettbecker.com/

- Cheating!!!! Al could change:

- How do we assess?
e teach

e teach
e teach
we teach.

sk

Both are old problems.
The first already has
solutions. The second
only has approximations.

X
GO

It seems we are starting to
move in this direction now?

Reshape the way
programming (and
other things) are
learned, and the whole
traditional computing
BSc curriculum might
change

- This could change who is, and who is not, attracted to computing

- This could be a big agent of change in Broadening Participation in Computing

- This could narrow the computing divide

- We may not be able to control this, but we can influence it

*www.brettbecker.com/publications/#iticse23keynote

https://www.brettbecker.com/publications/#iticse23keynote

You probably know that these tools are getting better, and
accelerating in capability (and use) with no slowing down in sight

At first there was panic — Assessment! Cheating!

Then the “capabilities” papers — how good are these models?

Then the theoretical “doom and excitement” papers — what
problems and opportunities will GenAl bring (maybe)

The Robots Are Coming: Exploring the Implications of The Robots are Here:
OpenAl Codex on Introductory Programming Navigating the Generative Al Revolution in Computing Education

GPT-4, summer 2023
(same exams as 2021)

Codex, 2021 (CS1)

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 ool
OP O'-_N) A N M T N O™~ 00O A A N M T N O~ 0000 O +H (N
000000000*‘*‘500000000*‘*“- R T T T T T T T T e
55 555 S EEE R RS R RN R A
Test 1 | Test 2

James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi, Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots Are Here: Navigating the Generative Al Revolution in Computing Education. In Proceedings of the 2023 Working Group Reports on Innovation and Technology in Computer Science Education
(ITiCSE-WGR '23). Association for Computing Machinery, New York, NY, USA, 108—159. https://doi.org/10.1145/3623762.3633499. www.brettbecker.com/publications

https://doi.org/10.1145/3623762.3633499
http://www.brettbecker.com/publications

Well, people (obviously) started using GenAl in the classroom, albeit
in nascent and various was, What we need to do is research that.

The Robots are Here:

Navigating the Generative Al Revolution in Computing Education

James Prather”
Abilene Christian University
Abilene, Texas, USA
james.prather@acu.edu

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Hieke Keuning
Utrecht University
Utrecht, The Netherlands
h.w.keuning@uu.nl

Andrew Luxton-Reilly
University of Auckland
Auckland, New Zealand

andrew@cs.auckland.ac.nz

Raymond Pettit
University of Virginia
Charlottesville, Virginia, USA
raymond.pettit@virginia.edu

. https://doi.org/10.1145/3623762.3633499

Paul Denny*
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Ibrahim Albluwi
Princess Sumaya University for
Technology
Amman, Jordan
Lalbluwi@psut.edu jo

Natalie Kiesler
DIPF Leibniz Institute for Research
and Information in Education
Frankfurt am Main, Germany
kiesler@dipt.de

Stephen MacNeil
Temple University
Philadelphia, Pennsylvania, USA
stephen.macneil@temple.edu

Brent N. Reeves
Abilene Christian University
Abilene, Texas, USA
brent.reeves@acu.edu

Juho Leinonen®
University of Auckland
Auckland, New Zealand

jubo.leinonen@auckland.ac.nz

Michelle Craig
University of Toronto
Toronto, Canada
mcraig@cs.toronto.edu

Tobias Kohn
Karlsruhe Institute of Technology
Karlsruhe, Germany
tobias. kohn@kit.edu

Andrew Petersen
University of Toronto Mississauga
Mississauga, Canada
andrew_pelersen (@utoronto.ca

Jaromir Savelka
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
jsavelka@cs.cmu.edu

https://doi.org/10.1145/3623762.3633499

So where are we how?

 GenAl is probably the biggest change in education ever.
 And we haven’t begun to see the real effects yet.

We can't predict the future - especially here in this context.

 What about the printing press for instance?

It took generations for the impact to be felt, and it was
relatively predictable.

Sure eventually everyone would have school books but it was
not overnight. It took decades from the printing press to the
average student having probably a book.

And the effect of the books took ages to take hold.

« 8,505 items published at the SIGCSE Technical Symposium
from1970-2023

« 257,896 citations
« 9,741,018 downloads

« How many widely used practice innovations can you think of?

« How many of these do you use regularly?

GenAl was/is more or less instant in effect and it is improving at
light speed

We don’t know what the eventual effects will be (if there ever
are “eventual effects”)

Books ran their course. The internet largely killed them.

Will Al ever run it’s course?

So WHERE are we now?

We are starting to see actual problems (symptoms)

 Atleast we think —in real trials (Porter & Zingaro, CS50,
others)

We are also starting to see actual positives (antidotes)

At least we think —in real trials (Porter & Zingaro, CS50,
others)

These are also starting to come to light in small research
trials
e ButaLOT more research is needed to confirm these
 Another But —the technology is advancing faster than
these trials and research studies.
e What do we do about that?

LEARN

Al-Assisted

PYTHON PROGRAMMING

With Copilot and ChatGPT

Leo Porter + Daniel Zingaro

ll MANNING

WITH COPILOT AND CH;

e | Harvard John A Paulson
School of Engineering
and Applied Sciences

N E W S All News Stories

“Quacking” into computer
programming Teaching CS50 with Al

New Al bot hBlpS students learn to code Leveraging Generative Artificial Intelligence in Computer Science Education

By Matt Goisman | Press contact Rongxiq]_.iu. Carter ZFnk'.E Charle Li].l

January 30, 2024 Harvard University Harvard University Yale University
Cambridge, MA, USA Cambridge, MA, USA New Haven, CT, USA

rongxinliu@cs50.harvard.edu carter@cs50.harvard edu charlie lin@yale.edu
)
@ @ @ Andrew Holmes Patrick Thornton David J. Malan
Harvard University Harvard University Harvard University

Cambridge, MA, USA Cambridge, MA, USA Cambridge, MA, USA

Harvard students enrclled in C550, which teaches the fundamentals of aholmes@college harvard.edu patrickthornton@college harvard.edu malan@harvard edu

computer programming for a range of languages, had some special help with
their final prajects this year — an Al chatbot called the CS50 Duck.

Beginning last summer, course instructors began to integrate a suite of
artificial intelligence, including the “CS50 Duck,” software built atop a large
language model that helps students check their code and find answers to
questions related to their coursework. The Duck is named for the class
mascot, a yellow rubber duck, an allusion to “rubber duck debugging,”
whereby new programmers are encouraged to talk through their
programming problems with, in the absence of & fellow human, a rubber
duck.

Dawvid J. Malan, Gordon McKay Professor of the Practice of Computer
Science at the Harvard John A Paulson School of Engineering and Applied

Sciences (SEAS), who teaches the course, first deployed the tools with a

small group of students this summer before integrating them into CS50

sections this fall. The yellow rubber duck i the class masoot f
CSE0 Duck fo help students check their cod

which this semester alsp integrated an artificial inteligence chathat called the

 Grinnell

“The Duck was mv best friend.” said first-vear student Hannah Neuven. who

https://cs.harvard.edu/malan/publications/V1fp0567-liu.pdf

https://seas.harvard.edu/news/2024/01/quacking-computer-programming

https://cs.harvard.edu/malan/publications/V1fp0567-liu.pdf
https://seas.harvard.edu/news/2024/01/quacking-computer-programming

Using Large Language Models to Enhance
Programming Error Messages

Juho Leinonen
Aalto University
Espoo, Finland
juho.2 leinonen@aalto.fi

Brent Reeves
Abilene Christian University
Abilene, Texas, USA
brent.reeves@acu.edu

Arto Hellas
Aalto University
Espoo, Finland
arto.hellas@aalto.fi

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Sami Sarsa
Aalto University
Espoo, Finland
sami.sarsa@aalto.fi

James Prather
Abilene Christian University
Abilene, Texas, USA
Jjames.prather@acu.edu

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

ABSTRACT

A key part of learning to program is learning to understand pro-
gramming error messages. They can be hard to interpret and iden-
tifying the cause of errors can be time-consuming. One factor in
this challenge is that the messages are typically intended for an
audience that already knows how to program, or even for pro-
gramming environments that then use the information to highlight
areas in code. Researchers have been working on making these
errors more novice friendly since the 1960s, however progress has
been slow. The present work contributes to this stream of research
by using large language models to enhance programming error
messages with explanations of the errors and suggestions on how
to fix them. Large language models can be used to create useful
and novice-friendly enhancements to programming error messages
that sometimes surpass the original programming error messages
in interpretability and actionability. These results provide further
evidence of the benefits of large language models for computing
educators, highlighting their use in areas known to be challeng-
ing for students. We further discuss the benefits and downsides of
large language models and highlight future streams of research for

ACM Reference Format:

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James
Prather, and Brett A. Becker. 2023. Using Large Language Models to Enhance
Programming Error Messages. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2023), March 15—
18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages. https:
//doiorg/10.1145/3545945 3569770

1 INTRODUCTION

Programming Error Messages (PEMs) can be notoriously difficult
to decipher, especially for novices [33], possibly to the extent that
they contribute to the perception that programming is overly chal-
lenging [6]. Eve-tracking studies reveal that novices read error
messages and spend a substantial amount of programming time
trying to understand them [4]. Instructors report that they spend
a considerable amount of time helping novices with these often
cryptic messages [15, 31, 32, 37]. It is also known that error message
presentation affects novice programming behavior [23]. For over
six decades, researchers have attempted to improve these messages,
and still there is a call for more work on the topic [7]. Some recent

il error rmesceaness inbo e

https://doi.org/10.1145/3545945.3569770
http://www.brettbecker.com/publications

Despite researching programming error messages for years,

VAV ANV

| dic hink that thsz/ might be a thing of the past...

Claim (~99% confidence): Generative Al is better at programming than 99% of
our students at your institution at the end of year 1 —
* At leastin terms of current assessment and materials

Are we still teaching introductory programming the same way we were 2
years ago?

What should we do differently?
How can GenAl be leveraged for better learning?

How does this affect other courses?

Not-bold claim (100.00% confidence): GenAl will cause
problems and we need to deal with these

We have developed:

* A new type of programming problem for education: Prompt Problems

* Prompt Problems are designed to help students learn how to write
effective prompts. It’s more than a copy/paste of the problem itself.

Prompt Problems: A New Programming Exercise for the

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Andrew Luxton-Reilly
University of Auckland
Auckland, New Zealand

aluxton-reilly@auckland.ac.nz

https://dl.acm.org/doi/pdf/10.1145/3626252.3630909

Generative Al Era

James Prather
Abilene Christian University
Abilene, TX, USA

james.prather@acu.edu

Juho Leinonen
University of Auckland
Auckland, New Zealand

juholeinonen@auckland.ac.nz

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Thezyrie Amarouche
University of Toronto Scarborough
Toronto, ON, Canada
thezyrie.amarouche@mail.utoronto.ca

Brent N. Reeves
Abilene Christian University
Abilene, Texas, USA

brent.reeves@acu.edu

https://dl.acm.org/doi/pdf/10.1145/3626252.3630909

We have developed:

* A new tool that can be used by students to practice Prompt Problems:
Promptly (research prototype available for your use at promptly-
sigcse.web.app)

* Piloted on several institutions on three continents in English,

Portuguese, and Arabic with hundreds (probably thousands) of
students.

Promptly: Using Prompt Problems to Teach Learners How to
Effectively Utilize Al Code Generators

Paul Denny Juho Leinonen James Prather

The University of Auckland The University of Auckland Abilene Christian University
Auckland, New Zealand Auckland, New Zealand Abilene, TX, USA
paul@cs.auckland.ac.nz juho.leinonen@auckland.ac.nz james.prather@acu.edu

Andrew Luxton-Reilly Thezyrie Amarouche Brett A. Becker

The University of Auckland University of Toronto Scarborough University College Dublin
Auckland, New Zealand Toronto, ON, Canada Dublin, Ireland

aluxton-reilly@auckland.ac.nz thezyrie.amarouche@mail.utoronto.ca brett.becker@ucd.ie

Brent N. Reeves
Abilene Christian University
Abilene, TX, USA
brent.reeves@acu.edu

https://arxiv.org/pdf/2307.16364

https://arxiv.org/pdf/2307.16364

Clearly Prompt Problems and Promptly go hand-in-hand

So let’s dive in...

* How would you
ow woue Y [[1=21], [[4, 2],
explain this (3,] (3, 111
problem?
[[1x2, 31, [[9, 2, 31,
[4, 561, q (4, 5, 61,
[7, 8, [91] [7, 8, 111
[(r(x, 2, 3, 4], [[11, 12, 3, 4],
[|5, 6.7, 81, [15, 16, 7, 81,
[9, 10, [11, 12]1, [9, 10, 1, 2],
[13, 14, |15, 16]] [13, 14, 5, 6]]
[(rja, 2, 3, 4, 5I, ((19, 20, 3, 4, 5],
[l6, 7,~.8, 9, 10], [24, 25, 8, 9, 10],
[11, 12,\13}\14, 151, [11, 12, 13, 14, 15],
[16, 17, 18, [19, 20], [16, 17, 18, 1, 2],

(21, 22, 23, (24, 25]] (21, 22, 23, 6, 7]]

* A conversation between a (real) student and ChatGPT:

Prompt 1: Hi, [want you to write a Python program.

ChatGPT response 1: Sure, what would you like the program to do?

* A conversation between a (real) student and ChatGPT:

Prompt 1: Hi, [want you to write a Python program.
ChatGPT response 1: Sure, what would you like the program to do?

Prompt 2: [have a square matrix, and I want to swap the first half of the
rows with the second half of the rows.

ChatGPT response 2: Here’s a Python program that should do what you're
asking for:

def swap_matrix_rows(matrix):

* A conversation between a (real) student and ChatGPT:

Prompt 3: That’s not exactly what [meant. I actually want to swap the
first half of the elements in each row with the corresponding elements in

the second half of the rows.

ChatGPT response 3: No problem, here’s an updated version of the Python
program that should swap the first half of the elements in each row with the
corresponding elements in the second half of the rows:

def swap_matrix_elements(matrix):

* A conversation between a (real) student and ChatGPT:

Prompt 4: Oops, sorry, I wasn't clear. I actually want to swap the first half
of the elements in the first half of the rows with the corresponding
elements in the last half of the rows.

@21, (4, 21,

(3, @1 (3, 111
[[I~2, 3] [, 2, 31
[4, 5%6] 4, 5, 6
7, 8, 111

* A conversation between a (real) student and ChatGPT:

Prompt 4: Oops, sorry, I wasn't clear. I actually want to swap the first half
of the elements in the first half of the rows with the corresponding
elements in the last half of the rows.

Should we be helping students develop this skill?
If so, then how?

N
/ Problem

Instructor

N\

/ Specification
Student

N\

/ Implementation
Avuto-grader

N\

Evaluation

"This is good" |:> "Thig ig **%x%mn
Problem ooar

Instructor

N\

/ Specification
Student

N\

/ Implementation
Avuto-grader

N\

Evaluation

"This is good" [> "This is ***x"

/ Problem ooar

Insirucio\r
Specification

A sentence can be "censored” by having all banned words removed. Define a
function called censor_sentence() which takes two inputs: a sentence (this will be a
string, with no punctuation, where words are separated by a single space character)
and a list of banned words. The function should return a new string where all of the
characters in any banned word are replaced with "*",

Student

N\

/ Implementation
Avuto-grader

N\

Evaluation

"This is good" [> "This is ***x"

/ Problem ooar

Instructor

\ A sentence can be "censored” by having all banned words removed. Define a

function called censor_sentence() which takes two inputs: a sentence (this will be a

S pec ifi cq ii o n string, with no punctuation, where words are separated by a single space character)

and a list of banned words. The function should return a new string where all of the
characters in any banned word are replaced with "*",

Student

def censor_sentence(sentence, banned_words):
sentence = sentence.split()

° for word in sentence:
I m p I eme nlllallll on if word in banned words:
sentence[sentence.index(word)] = "*" * len(word)
return ".join(sentence)

Avuto-grader

N\

Evaluation

"This is good" [> "This is ***x"

/ Problem ooar

Instructor

A sentence can be "censored” by having all banned words removed. Define a
cme . function called censor_sentence() which takes two inputs: a sentence (this will be a
S pec I fl cq il o n string, with no punctuation, where words are separated by a single space character)
and a list of banned words. The function should return a new string where all of the
characters in any banned word are replaced with "*",

Student

detr censor_sentence(sentence, banned_'r.rcr"c:su
sentence = sentence.split()

s

for word in sentence:

[]
I I if word in banned_words:
mplementation a2 8 Lol

sentence[sentence.index(word)] =

o g = ~ - " 3 - 3
return .join(sentence)
Avuto -gra der
v s = "apple banana cherry dragonfruit™
cs = censor_sentence(s, [“"dragon®, "fruit"™, “cherry"])
print(cs)
v s = "a aa asa aaaa aaaaa aaaaaa”
[J cs = censor_sentence(s, ["a", "aaa"])
va Uq I o n primt(Ci)
v s="aaaaaaaa"
cs = censor_sentence(s, ["a"])

print(cs)

Prompt Problems:

"This is good" [> "This is ***x"

/ Problem ooar

Student

\ A sentence can be "censored” by having all banned words removed. Define a

function called censor_sentence() which takes two inputs: a sentence (this will be a

S pec ifi cq ii o n string, with no punctuation, where words are separated by a single space character)

and a list of banned words. The function should return a new string where all of the

characters in any banned word are replaced with "*",
def censor sentence(sentence, Daﬂﬂed_l-!GT‘CS) -
sentence = sentence.split()
for word in sentence:

Implemeniqiion if word in banned words: L

sentence[sentence.index(word)] = len(word)

return ".join(sentence)

Avuto-grader

v s = "apple banana cherry dragonfruit™
cs = censor_sentence(s, [“"dragon®, "fruit"™, “cherry"])
print(cs)

v s = "a aa asa aaaa aaaaa aaaaaa”

cs = censor_sentence(s, ["a", "aaa"])

Evaluation e

s="aaaaaaaa"
cs = censor_sentence(s, ["a"])
print(cs)

Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.

o Class Registration o Exercize #1 0 Exercise #2 o Exercise #3

Viewthe problem

™ branch = 11

. leaf = 4 '
I
4

e i
01 2 3 5 6 7 9 10 11
I
jun{p =2 “Three leaves eaten”

LeafEater(2,4,11) =>3
LeafEater(1,1,5) =>6

Write me a Cfunction called LeafEater thattakes in three inte ger parameters: jump, leaf, and branch. Branch
represents the length ofthe branch (zero indexed). Jump repres ents how far the leaf eater jumps each time .

(1.e., which array positions it checks for a leaf). Leaf represents how often leaves appear on the branch (Le., t U e n t w r I te s r o m t o r

which array positions have a leaf). I any position that the le af eater checks has aleaf, the leaf eater eats the

leaf. The leaf eater will also check the first position (i.e., index 0), and if it has a leaf, it gets eaten. The function

should return the number of leaves eaten.

| Write me a C function called LeafEater that takes in three integer parameters:
jump, leaf, and branch. Branch represents the length of the branch (zero
it fEater(int jump, t 1 t b h)
e G e { indexed). Jump represents how far the leaf eater jumps each time (i.e., which
(i ® lea 3 q

array positions it checks for a leaf). Leaf represents how often leaves appear
on the branch (i.e., which array positions have a leaf). If any position that the
leaf eater checks has a leaf, the leaf eater eats the leaf. The leaf eater will also
check the first position (i.e., index 0), and if it has a leaf, it gets eaten. The

Test 3

function should return the number of leaves eaten.

Tests

Test 6

o Class Registration

o Exercise #1 0 Exercise #2 o Exercize #3

Viewthe problem

' leaf = 4 ’ .
|
4

L ™TTT T T branch=11
01 2 3 5 6 7 8 9 10 11
Ir d
juﬁp =2 “Three leaves eaten”

LeafEater(2,4,11) =>3
LeafEater(1,1,5) =>6

VWrite me a Cfunction called LeafEater thattakes in three inte ger parameters: jump, leaf, and branch. Branch
represents the length ofthe branch (zero indexed). Jump repres ents how far the leaf eater jumps each time
(i.e., which array positions it checks for a leaf). Leaf represents how often leaves appear on the branch (l.e.,
which array positions have aleaf). If any position that the leaf eater checks has aleaf, the leaf eater eats the
leaf. The leaf eater will also check the first position (i.e., index 0), and if ithas a leaf, it gets eaten. The function
should return the number of leaves eaten.

CLICK HERE TO ASK CHATGPT!

ChatGPT response:

int LeafEater(int jump, int leaf, int branch) {

int eaten = 8;
for {int i = 8; 1 <= branch; i += jump) {
if (i % leaf == 8) {

eaten++;

return eaten;

Test1
Test 2

Test 3

o
o
[
@ Testd
@ Tests
@ Tests

Code Running response:

ou pass S (“ot) !

Code is shown and evaluated

int LeafEater(int jump, int leaf, int branch) {

int eaten = 9;
for (int 1 =0
if (1 % lea
eaten++;

¥

return eaten;

.F

i <= branch; i += jump) {

== o) {

Test 1

Test 2

Test 3

Test 4

Test 5

O OO

Test 6

Code Running response:

You pass \(~o*)/ !

“I felt like | needed to fully understand the . X %
question before | could get a good answer

from the language model.”

“I felt like | needed to fully understand the =

question before | could get a good answer i
from the language model.” | i
i

-‘:I?Iﬂ

“| enjoyed this type of task because it
made me look at the problems in a
different way. It made me think outside
the box.”

“I felt like | needed to fully understand the =
question before | could get a good answer
from the language model.”

“| enjoyed this type of task because it
made me look at the problems in a
different way. It made me think outside
the box.”

“I really enjoyed having to define the
problem as this is often done for us in the
labs and projects. So | learned how to go
through the process of understanding the

problem then explaining it.” 5 | + i /

* Problem difficulty and prompt variation?
* CS1: n=58; CS2: n =182

* 3 Prompt Problems per course

Words in successful prompts
A

/ \ 100 : BN All Successful Submissions
Students Sub Mean Min Max L Final Unsuccessful Submission
44 (76%) 2.3 18.0 7 33 -
CS1 31 (86%) 1.8 47.9 26 85 £ ol .
20 (65%) 7.5 40.7 25 66 : —
136 (75%) |24 23.0 10 84 | —— § 4 N
CS2 121(96%) 1.3 28.3 12 88 = L e s .
114 (99%) 1.5 34.2 16 92 T
o

012 3456 7 8 91011121314151617181920212223242526
Submission

* Problem difficulty and prompt variation?

* CS1: n=58; CS2: n =182

* 3 Prompt Problems per course

(
Sub Mean Min Max

Words in successful prompts
A

|

Students

44 (76%) 23 18.0 7 33
CcS1 31(86%) 1.8 479 26 85

20 (65%) 7.5 40.7 25 66

136 (75%) 2.4 23.0 10 34
CS2 121 (96%) 1.3 28.3 12 88

114 (99%) 1.5 34.2 16 92

v x
80] |9 60‘ 90} 8.0+75+9.0 - 8.17
\-)'\-) -)'\-)') ’

6.5+7.0+6.0

'* ?)i?)"&)"—3—"“

Successful

Write me a Python program that takes
five decimal numbers separated by

spaces, and outputs the average of

the 3 median numbers rounded to
2dp.

* Problem difficulty and prompt variation?

* CS1: n=58; CS2: n =182

* 3 Prompt Problems per course

Words in successful prompts
A

(
Students Sub Mean Min Max

44 (76%) 23 18.0 7 33
CS1 31(86%) 1.8 47.9 26 85
20 (65%) | 7.5 40.7 25 66
136 (75%) 2.4 23.0 10 84
CS2 121(96%) 13 28.3 12 88
114 (99%) 1.5 34.2 16 92

|

J X 8.0+75+9.0

[80 ¢)l 95] 60\ 9.0 |y == - - 8.17
\-)’\-)b)’\v" }

- 6‘5+7;)+6.0 =) 6.5

'4))"fé’,)

Successful

Write me a Python program that asks
the user to input 5 decimal numbers
separated by spaces. When the input
is complete, remove the highest and

lowest valued decimal numbers and
then add the rest up. Once the
remaining decimals have been added

together, divide them by 3. Then show

the user the result and that the result is
rounded to two decimal places.

* Problem difficulty and prompt variation?

* CS1: n=58; CS2: n =182

* 3 Prompt Problems per course

(
Sub Mean Min Max

Words in successful prompts
A

|

Students

44 (76%) 23 18.0 7 33
CcS1 31(86%) 1.8 479 26 85

20 (65%) 7.5 40.7 25 66

136 (75%) 2.4 23.0 10 34
CS2 121 (96%) 1.3 28.3 12 88

114 (99%) 1.5 34.2 16 92

v X
8.0+75+9.0 =) 8.17

[80 ¢)l 95] 60\ 9.0 |y ==
\-)'\0) -)'\-)' S

- 6‘5+7;)+6.0 =) 6.5

'4))"35’,)

Unsuccessful

Write me a Python program that
prompts the user to enter five decimal
numbers (1dp) between 1.0 and 10.0
separated by spaces. From these
values choose three, ensuring that they
are all different but within 0.5 of each
other. Find the average of these

numbers and round the result to 2dp.

e Student reflections?
* CS1: n=58; CS2: n =182

* 3 Prompt Problems per course

Exposure to new constructs

* “These exercises introduced me to new functions... so this method of writing code could help increase
my programming vocabulary.”

* “The main benefit | gained ... was observing the logical structure of the programs that it created. In all
three cases it used functions that | was previously unaware of, allowing me to gain an understanding of
how they could be used and the correct syntax for implementing them.”

Computational thinking

* “[| think while writing prompts for Al, we actually have to have a clear logic to break down the
question and explain in plain words”

* “| do think that writing prompts for code is a good way of developing analytical and problem-solving
thinking and skills as it forces you to think through the steps needed to take the input through to the
output.”

e Student reflections?
* CS1: n=58; CS2: n =182

* 3 Prompt Problems per course

Resistance / negative feedback

* “You have just ruined every piece of self esteem | had regarding coding. | know full well that it would
have taken me around 35 minutes to figure out how to create those functions and that damn computer
did it in seconds. Robots are going to own us within years.”

However, the models are always advancing! (remember)?

Can multimodal / vision models solve prompt problems? Not trialed yet!

The Widening Gap: The Benefits and Harms of Generative Al for Novice

Programmers

JAMES PRATHER, Abilene Christian University, TX, USA
BRENT REEVES, Abilene Christian University, TX, USA
JUHO LEINONEN, Aalto University, Finland
STEPHEN MACMEIL, Temple University, PA, USA

N t t b I . h d k . ARISOA 5. RANDRIANASOLO, Abilene Christian University, TX, USA
- =T —_ .
O ye p u I S e WO r]] BRETT BECKER, University College Dublin, Ireland
ey - . . T .
F-i’ BAILEY KIMMEL, Abilene Christian University, TX, USA
 GenAl helps good students get L JARED WRIGHT, Abiene hesian Uiy T, USA
b
o BEN BRIGGS, Abilene Christian University, TN, USA
_
b ett e r O r Sta y t h e S a l I I e) - MNovice programmers often struggle through programming problem solving due to a lack of metacognitive awareness and strategies.
’ o0 Previous research has shown that novices can encounter multiple metacognitive difficulties while programming, such as forming
- incorrect conceptual models of the problem or having a false sense of progress after testing their solution. Novices are typically
o B u t I ' | a n y Of t h e p O O r St u d e n t S get | unaware of how these difficulties are hindering their progress. Meanwhile, many novices are now programming with generative Al
E (GenAl), which can provide complete solutions to most introductory programming problems, code suggestions, hints for next steps
) - when stuck, and explain cryptic ervor messages. Its impact on novice metacoghition has only started to be explored. Here we replicate
WO rse 5 a previous study that examined novice programming problem solving behavior and extend it by incorporating GenAl tools. Through
* e 21 lab seszions cunsisli.ng of |Jarti|:ip:ml observation, interview, and eye lIacking. we exp]nre how novices are cnding with GenAl tools.
. Although 20 of 21 students completed the assigned programming problem, our findings show an unfortunate divide in the use of
o I S t h e re a re a I p Ote nt I a | fo r a n A I o GenAl tools between siudents who accelerated and students who struggled. Students who accelerated were able to use GenAl to create
M code they already intended to make and were able to ignore unhelpful or incorrect inline code suggestions. But for students who
. . . (] struggled. our findings indicate that previously known metacognitive difficulties persist, and that GenAl unfortunately can compound
D I V I d e I n O u r p rO g ra m m e S rr:: them and even introduce new metacognitive difficulties. Purthermore, struggling students often expressed cognitive dissonance about
° e their problem solving ability, thought they performed better than they did, and finished with an illusion of competence. Based on our
lf. observations from both groups, we propose ways to scaffold the novice GenAl experience and make suggestions for future work.
* What do we do about that? S
[‘;r-’ CCS Concepts: « Social and professional topies — Computing education.
f'“"] Additional Key Words and Phrases: generative Al large language models, metacognition
E e Enguag E

ACM Reference Format:

James Prather, Brent Reeves, Juho Leinonen, Stephen MacNeil, Arisoa 5. Randrianasole, Brett Becker, Bailey Kimmel, Jared Wright,
and Ben Briggs. 2024. The Widening Gap: The Benefits and Harms of Generative Al for Novice Progeammers. In . ACM, New York, NY,
USA, 27 pages. httpa://doiorg X000 0000

X

f
C

Permission to make digital ar hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
maxde or distributed for prafit or commercial advantage and that copies bear this notice and the full ctation on the frst page. Copyrights for components
of this work owned by others than the authors) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or ko redistribute to lists, requires prior specific permission and/or a fee. Request permissions fram permissionsi@acm.org,

© 2024 Copyright heldd by the owner/author({z). Fublication rights licensed to ACAM.

Manuscript submitted to ACM

https://arxiv.org/abs/2405.17739

https://arxiv.org/abs/2405.17739

o Class Registration o Exercise #1

m
p
3
(¥
M
Tk
rJ

Enter your name: Bob
Hello Bob

Visual representation of
" problem (in this case, an

animation illustrates user

interaction with program)

Write me a Python program that asks the user to enter their name, and then prints the word "Hello™ followed by
a space, followed by their name

ity Gt pawost s \ Prompt entry
CLICK HERE TO ASK CHATGPT!

LLM response
ChatGPT response: /

Execution output (in this case, a
success message as all tests pass)

D

ol

it

 Students described engaginF in metacognitive aspects of learning
such as planning their problem solving approach and monitoring
whether they understood what they were doing.

* This increased awareness was also exemplified by students who
flescr_ibed how the tool might better support reflecting on their
earning.

* (We think) Prompt Problems are a useful way to teach programming
concepts and encourage metacognitive programming skills.

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Prompt Problems: A New Programming Exercise for the
Generative Al Era. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024), March 20-23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 7
pages. https://doi.org/10.1145/3626252.3630909 (DOI not active until March). Preprint available: https://arxiv.org/abs/2311.05943. www.brettbecker.com/publications

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Promptly: Using Prompt Problems to Teach Learners How to
Effectively Utilize Al Code Generators. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI '24), May 11--16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 20
pages. https://doi.org/10.1145/3613904.3642407 (DOI not active until May). Preprint available: https://arxiv.org/abs/2307.16364. www.brettbecker.com/publications

https://doi.org/10.1145/3626252.3630909
https://arxiv.org/abs/2311.05943
http://www.brettbecker.com/publications
https://doi.org/10.1145/3613904.3642407
https://arxiv.org/abs/2307.16364
http://www.brettbecker.com/publications

* An “informal” survey at ITICSE 2023

How do you feel about large language models and generative Al in computing education?

Positive,
optimistic,
excited, etc.

Negative,
pessimistic,
anxious, efc.

(18.5%)

(7.4%)

| plan to integrate / incorporate generative Al tools into my computing courses.

T (44.4%)
No, Yes,
definitely (25.9%) absolutely
noft

(11.1%)

) I

1 2 3 4 5 6 7

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	A small activity
	A pilot study
	A pilot study
	A pilot study
	A pilot study
	A pilot study
	A typical programming exercise
	A typical programming exercise
	A typical programming exercise
	A typical programming exercise
	A typical programming exercise
	Prompt Problems: A new programming exercise
	A tool for Prompt Problems
	Slide Number 32
	A tool for Prompt Problems
	A tool for Prompt Problems
	Some thoughts from students
	Some thoughts from students
	Some thoughts from students
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Reflections
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Resist or embrace?

