@InProceedings{prather2023scaffolding,

author="Prather, James and Homer, John and Denny, Paul and Becker, Brett A. and Marsden, John and Powell, Garrett",

editor="Keane, Therese and Lewin, Cathy and Brinda, Torsten and Bottino, Rosa",

title="Scaffolding Task Planning Using Abstract Parsons Problems",

booktitle="Towards a Collaborative Society Through Creative Learning’, Author's version of paper published in IFIP World Conference on

year="2023",

Computers in Education, WCCE 2022: Towards a Collaborative

publisher="Springer Nature Switzerland", Society Through Creative Learning pp 591-602 Version of record:

address="Cham",
pages="591--602",
isbn="978-3-031-43393-1"}

https://dx.doi.org/10.1007/978-3-031-43393-1_53

Scaffolding Task Planning Using Abstract
Parsons Problems

James PI.atherl[0000—0003—280’7—6042}7 John Homerl[0000_0002_5067_4009], Paul
Denny2[0000700027515079806]’ Brett A. BeckerS[000070003714467647)(]7 John

Marsden?[0000-0001-9584-035X] 414 Garrett Powell![0000-0002—3221-7015]

! Abilene Christian University, Abilene Texas, USA james.prather@ucd.ie
2 The University of Auckland, Auckland, New Zealand p.denny@aukland.ac.nz
3 University College Dublin, Belfield Dublin 4, Ireland brett.becker@ucd.ie
4 North Carolina State University, Raleigh North Carolina, USA jmmarsde@ncsu.edu

Abstract. Interest is growing in the role of metacognition in computing
education. Most work to-date has examined metacognitive approaches of
novices learning to code. It has been shown that novices navigate through
discernible stages of a problem-solving process when working through
programming problems, and that scaffolding can be beneficial. In this pa-
per, we describe a novel scaffolding task aimed at guiding novices through
a crucial stage of developing and evaluating a problem-solving plan. We
presented novices with a problem statement before working through an
Abstract Parsons Problem, where the blocks present structural elements
rather than complete code, to aid high-level planning before writing code.
Comparing groups who experienced this approach with those that did
not, revealed that novices who worked on an Abstract Parsons Prob-
lem before coding were more successful in solving the task and demon-
strated improved metacognitive knowledge related to task planning when
asked to identify useful future problem-solving strategies. Our observa-
tions from two courses over two years suggest that scaffolding students
through a planning step prior to coding can be beneficial for students.
We provide directions for future work in exploring strategies for provid-
ing this type of guidance, including the use of different types of planning
activities, and studying these effects at scale.

Keywords: Automated assessment tools - CS1 - Introductory program-
ming - Novice programmers - Metacognition - Metacognitive awareness -
Parsons problems

1 Introduction

Metacognition, or thinking about thinking, is an increasingly important topic
in computing education [1]. It is an essential set of skills necessary for efficient
and elegant programming problem-solving [2], and most successful novice stu-
dents tend to display more metacognitive behaviors than their less successful

2 James Prather et al.

peers [3]. However, many novices lack metacognitive insight [4] making problem-
solving laborious and difficult, particularly in programming which is inherently
complex [5,6] and could be made easier to learn [7]. Without the ability to step
back and think through one’s progress (or lack thereof) during problem-solving,
novices may waste time on incorrect approaches or become lost and frustrated [8].
Applying metacognitive scaffolds in the context of novices learning to program,
holds promise but is under-investigated [9].

We present a novel classroom activity for scaffolding novice programmers’
metacognition through a specific stage of problem-solving as they envision their
solution before writing code. We utilize a variation on Parsons Problems [18]
for students to explicitly engage in planning out the structure of solutions after
reading a problem prompt. Unlike other forms of Parsons Problems, we used
abstract code statements (e.g. “while loop”, “assignment”, generic input/output,
etc.) rather than syntactically complete lines of code. This novel use of the
Parsons Problem framework, which we call “Abstract Parsons Problems”, served
two purposes. First, it removed syntactic clues from the blocks which researchers
have previously observed being used to construct solutions without having a full
understanding of the problem [20]. Second, these abstract statements aim to get
students to plan the general structure of solutions before jumping into code —
supported by prior research showing that prematurely writing code often inhibits
success [13]. We hypothesize that this approach will: (1) assist students in suc-
cessfully solving the corresponding programming task; and (2) encourage them
to plan solutions to future programming tasks once the scaffolding is removed.

We explored the use of Abstract Parsons Problems in two introductory
courses taught over two years, and have observed students solving programming
problems both with and without their use. We frame our evaluation around two
high-level goals: Goal 1: Explore whether students are more likely to success-
fully solve a programming task when they first work through a related Abstract
Parsons Problem. Goal 2: Discover in what ways the Abstract Parsons Problem
step affects students’ perceptions of task difficulty and their identification of fu-
ture problem-solving strategies. We address the first by comparing task comple-
tion rates when students work through an Abstract Parsons Problem beforehand
with a control group. To address the second, we analyze student comments from
treatment group surveys for evidence of metacognitive thoughts and behaviors
related to task difficulty and strategies students plan to use in the future.

2 Background

Metacognition describes knowledge about a person’s own cognitive control, in-
cluding identifying past strategies that have been successful (or not), monitoring
emotions and self-efficacy, and evaluating the validity of metacognitive knowl-
edge based on feedback [1]. It has been used in psychology-based research for
decades but has only begun to be researched in the context of computing ed-
ucation [1]. Regardless of discipline, metacognitive skills are accepted as aiding
learning, but such skills do not necessarily transfer easily across different pur-

Scaffolding Task Planning Using Abstract Parsons Problems 3

suits [10]. It is likely that the development of metacognitive skills needs to take
place within the context of a student’s learning in order to be effective.

Few studies have tried to explicitly attempt this. VanDeGrift et al. reported
helping students think through their design process, arguing that programming
courses should not only teach language/syntax but also metacognitive skills as-
sociated with programming [11]. More recent work has required students to
solve a test case problem (i.e. converting input to output) after reading the
problem prompt before they began coding [12]. Their results indicate that stu-
dents who first solved the test case problem were more successful at solving the
subsequent programming problem, avoided early misunderstandings that could
potentially derail their problem-solving process, and verbalized more metacog-
nitive behaviors than those in a control group. Their findings were confirmed in
two separate replications [13,14]. Another recent study found that both high-
and low-performers can exhibit weak metacognitive accuracy, illuminating the
potential for metacognitive interventions to benefit students of all skill levels [15].

2.1 Loksa’s problem-solving framework

Loksa et al. proposed a six-stage programming problem-solving process based
on psychology of programming literature [16,17] which serves as a theoretical
framework for novice metacognition while solving programming problems. Al-
though nominally sequential, these stages are in practice revisited frequently
as programmers refine a solution iteratively. The six stages are: (1) Reinterpret
problem prompt; (2) Search for analogous problems; (3) Search for new solutions
or adapt existing solutions; (4) Evaluate a potential solution; (5) Implement a
solution; and (6) Evaluate implemented solution.

When solving programming problems, beginners are often not aware of where
they are in the problem-solving process — demonstrating a lack of metacognition.
In the present work, we focus on stage 4 of Loksa’s framework FEwvaluate a po-
tential solution, described as [17]: “With a solution in mind, programmers must
evaluate how well this solution will address the problem. ... Without evaluating
potential solutions, programmers may waste time writing code and integrating
it into their program only to find that it does not actually solve their problem”.

One way to scaffold novice programmer metacognition during stage 4 of
the problem-solving process is with Abstract Parsons Problems (see Section 3).
Loksa suggested that novice programmers could benefit from some sort of explicit
scaffolding during the murky middle of the problem-solving process [17], and it
has been suggested that Parsons Problems could be used for this purpose [§].

2.2 Parsons Problems

Parsons & Haden first introduced Parsons Programming Puzzles, a kind of drag-
and-drop exercise involving code fragments, in 2006 [18|. Since then “Parsons
Problems” have received much attention, appearing in dozens of computing ed-
ucation research papers [19]. Parsons Problems have been used as a scaffolding

4 James Prather et al.

step before students learn to code as they remove the requirement for construct-
ing syntactically correct statements at the character level. However, this can
oversimplify the problem-solving process. Weinman et al. observed that some
students use syntactic clues in the blocks to find solutions without necessarily
understanding the problem, and thus introduced Faded Parsons Problems in
which parts of the provided code are incomplete [20]. Garcia et al. used Parsons
Problems to scaffold the programming design process [21]. However, they defined
blocks at a coarser level of granularity than what we propose, and did not seek
to discuss the intervention in the context of novice programmer metacognition.

3 Methodology

Our observations were made during two consecutive years (referred to as Year
1 and Year 2) of a typical introductory programming or “CS1” [22] course using
C++ taught at a small US university. The Abstract Parsons Problems were
introduced approximately half-way through the course. Fig. 1 shows a schematic
view of the evaluations where students completed a survey after attempting
a programming problem. In each year, students solved the same programming
problem both with and without the Abstract Parsons Problem step. The Year
1 evaluation used a between-subjects design, where each student was assigned
to one of two groups, with only one prompted to solve the Abstract Parsons
Problem after reading the problem statement. When presenting and discussing
our results, we will refer to these two groups for Year 1 as the “Parsons” group and
the “non-Parsons” group. The Year 2 evaluation used a within-subjects design
where all students initially solved a programming problem (problem #1) without
the Abstract Parsons Problem step, and then approximately one week later
solved a problem of similar complexity (problem #2) that included the Abstract
Parsons Problem step. In both years, students had a whole class period (50
minutes) to complete each programming task and the survey.

Year 1 (n = 20) Year 2 (n = 31)
n=7 n=13 n=31
1 1 i Read problem statement #2
| Read problem statement | Read problem statement #1 Abstract Parsons Problem
Write program #1 N
Abstract Parsons S Write program #2

Problem - ‘urvey Survey

L Initial week Following week

Write program

Survey

Fig. 1. Overview of the use of Abstract Parsons Problems to scaffold programming
tasks and student surveys.

Scaffolding Task Planning Using Abstract Parsons Problems 5

The programming problem in Year 1 asked students to write a program to
display the set of distinct values coming from standard input until encountering
-1. This problem prompt can be seen in Fig. 2. In Year 2, programming problem
#1 asked students to print out a table of exponential numbers, and programming
problem #2 (presented to students one week later) asked students to sequentially
search for a value in an array. The difficulty of the two problems in Year 2 was
roughly similar for where students were in the course when they encountered
them, and commensurate with the topics covered in the two weeks.

The survey that students were prompted to complete after each programming
problem was designed to help us address Goal 2 (see Section 1). In both years,
the survey was identical and consisted of the following two reflective questions:
1) What did you find most difficult about this programming task? 2) What
strategies do you think might be useful for solving similar problems in the future?

The Abstract Parsons Problem was delivered via a web-based interface, us-
ing js-parsons [23] integrated into Canvas, illustrated in Fig. 2. Students could
drag individual blocks, corresponding to structural, data assignment, and in-
put/output statements, from the left side of the screen (where they were ini-
tially presented in a random order) to the right side of the screen. We included
more blocks than students would need since there are multiple solutions using
sequential loops or nested loops, one array or two arrays, etc. Most of these
blocks are not visible in Fig. 2. As described earlier, this “Parsons step” was
designed to focus students on planning their solution prior to writing code. The
Parsons interface did not provide students with feedback on the correctness of
their plans, and students were free to end the planning step and begin coding
at any time. Thus, it was acting as a supporting scaffold, and not feedback or
otherwise explicit guidance towards a correct answer.

Distinct Elements

Instructions

Read a series of numbers into an integer array, until -1 is entered. The input will have at least one number
(not counting -1) and may consist of up to 100 nhumbers. Print to the screen all distinct numbers in the array,
sequentially. In other words, every number that appears in the array will be printed to the screen exactly once,
in order by its first appearance, even if it appears multiple times in the array.

Drag from here Construct your solution here
while loop cout
assignment for loop
cout for loop
assignment cin

if statement

Fig. 2. Screenshot of the Abstract Parsons Problem shown to students in the Parsons
group prior to coding.

6 James Prather et al.

4 Results

In Year 1, the 33 students (4 women, 29 men) enrolled in the course were origi-
nally assigned to the non-Parsons (n = 16) and Parsons (n = 17) groups alpha-
betically by surname, resulting in the four women being divided evenly across
the two groups. We include in our data analysis all students who responded to
the survey and who attempted the coding task. In total, we have complete data
for 13 students in the non-Parsons group and 7 students in the Parsons group
(as illustrated in Fig. 1). In Year 2, there were 40 students (8 women and 32
men) enrolled in the course. We include in our data analysis all students who
responded to both surveys as well as attempted programming problems #1 and
#2. In total, we have complete data for 31 students.

4.1 Task success (Goal 1)

A key measure of success for a programming task is solution correctness. Our
first goal explores if the Parsons planning step helped students produce successful
solutions. Two observations suggest that this step may have been helpful: in Year
1 data, the only students to successfully complete the programming task were
in the Parsons group. In Year 2 data, a greater proportion of students solved
the programming task when it followed the Abstract Parsons Problem step. We
now explore these results in more detail.

Most Year 1 students made just a single submission to the grading system,
towards the end of the timed task. All except one student made their first sub-
mission within 10 minutes of the session’s end, with 65% of students making
their first submission in the final 5 minutes. This pattern is consistent with the
fact that many students were unable to complete the problem in the time al-
lowed — a theme that emerged from our analysis of the survey responses (see
Section 4.2), particularly for the non-Parsons group. In Year 2, nearly twice
as many students successfully solved Problem #2 (which followed the Parsons
planning step) compared to Problem #1.

In Year 1, only three students in the course successfully solved the program-
ming task, all of whom were in the Parsons group. Given so few students com-
pleted the task, we manually examined the final code submissions in both groups
to further understand the level of progress made. We coded the submissions for
the presence of two patterns: a nested loop, and the use of two arrays. Given that
the programming task required students to identify distinct elements in an input
stream, we would expect a nested loop to be used either to check for repeated
values in a record of prior inputs as new inputs are being read or to examine
an array of all input values that have been stored once the stream is complete.
Presence of a nested loop structure in the submitted code is therefore evidence of
progress towards a viable solution. Although an elegant solution to the problem
requires just a single array (either to store all values, or to keep track of only
unique values), some students introduced two arrays — one to store all input
values from the stream and the second to store the distinct values. Although use
of a second array is not necessary, it is evidence of students executing a plan

Scaffolding Task Planning Using Abstract Parsons Problems 7

to store the distinct values separately for printing the solution. In addition to
manually coding the submissions for these two patterns, we also computed the
number of lines of code and the number of variables that were used. Table 1
compares the final submissions across students in Year 1 with respect to these
metrics, and shows the rate of success for students in Year 2.

Table 1. Comparison of metrics across the final code submissions made by students
in each group. Where counts are given, percentages are shown (in brackets).

Year 1 non-Parsons Parsons
(n=13) (n=1)
Solved task (count) 0 (0.0%) 3 (42.9%)
Nested loop (count) 2 (15.4%) 5 (71.4%)
Two arrays (count) 3(23.1%) 4 (57.1%)
Lines of code (mean) 33.38 38.66
Number of variables (mean) 3.15 4.22
Year 2 Problem #1 Problem #2
Solved task (count) 8 (25.8%) 13 (41.9%)

In addition to their greater success at solving the task in Year 1, we also found
that a larger proportion of students in the Parsons group produced code that was
closer to a working solution — particularly in terms of employing a nested loop
— as well as producing more lines of code, and making more use of variables,
on average. The number of students in each group is relatively small, and so
we are cautious about drawing any conclusions regarding the generalizability of
this result. Additionally we are not assuming that more lines and more variables
are good without taking context into account. However here, given that most
students did not submit a working solution, we see this as positive. Regardless,
students in the Parsons group had to divide their time between the planning
step and the coding step, and so we view it as promising that they achieved
greater success on the coding task in this study.

4.2 Difficulties & future strategies (Goal 2)

Our second goal was to understand how the Abstract Parsons Problem, when
used as a scaffolding step, might affect student perceptions of the programming
task. In particular, we were interested in what students found most difficult
about the task, and how the scaffolding might impact these perceived challenges.
We were also interested in understanding how the planning step might influence
the ways that students approach future programming problems, and in particular
the strategies they choose to adopt. Our post-survey targeted both of these ideas.
To analyze qualitative responses, we undertook a thematic analysis to identify
the main patterns of meaning. We followed guidelines described by Braun &

8 James Prather et al.

Clarke [24], beginning with data familiarisation. After reading all responses, we
assigned codes to each response and synthesized these into main themes.

4.3 Year 1

All students responded to both questions, with the exception of one student in
the non-Parsons group who did not respond to the second, yielding 39 qualitative
responses. We found two clear themes, one of which was prominent in the non-
Parsons group and the other prominent in the Parsons group.

The first theme related to time pressure, which was reported as a difficulty
of the task. This theme was very common in responses from students in the non-
Parsons group, but not from students in the Parsons group. This is surprising,
because both groups had an identical time limit for the programming task, yet
students in the Parsons group also had to engage with the Parsons Problem
step prior to coding, leaving less time for the coding itself. In other words, the
students in the Parsons group were asked to do more in the same time, yet they
raised time pressure as a challenge less frequently. Time pressure was mentioned
as the most difficult aspect of the programming task by 6 of 13 students in the
non-Parsons group (46%), compared with just 2 of the 7 students in the Parsons
group (29%). As an example, one student in the non-Parsons group expressed
feeling time pressure as: “I felt like the most difficult part was the time constraint.
The entire time I was working I could feel the pressure of the time running out.
1 feel like if I had more time to work and debug I could have solved the problem”.

The second theme related to task planning emerged from responses about
strategies identified as being useful for solving similar problems in the future. In
this case, students in the Parsons group were more likely to identify that some
form of planning would be useful to them in the future. Of the 7 students in the
Parsons group, 4 identified task planning as being an important future strategy
(57%), compared with just 2 of the 13 students in the non-Parsons group (15%).
A student from the Parsons group expressed the importance of task planning
as: “I think planning out what I am going to do before I actually write the code
will help. It allows for me to think out the problem and I might even be able to
figure out the problem without even writing code first”.

4.4 Year 2

All students responded to both questions for problems #1 and #2, for a total
of 62 qualitative responses. In addition to the same themes from Year 1, we saw
some new themes which we present below.

Problem #1. The first theme for Problem #1 was about domain knowledge.
Fourteen of the 31 students wrote something that indicated they did not have
enough domain knowledge to complete the task. Interestingly, none of these stu-
dents completed the program within the time limit. From understanding nested
loops to proper formatting using the setw() function (a function used in pro-
grams since week 2 of the course), almost half of students verbalized a lack of
course content understanding. One student exemplified this as: “Having more

Scaffolding Task Planning Using Abstract Parsons Problems 9

experience and practicing more. If I had more practice with nested for loops 1
might’ve been able to figure it out”.

Although there was no metacognitive intervention in Problem #1, the sec-
ond theme that emerged was related to task planning as vague metacognitive
statements. Six of the 31 students wrote about breaking the problem down or
ensuring they understood the prompt. Five completed the program within the
time limits; one did not. We labeled these as vague because there were no spe-
cific examples of what to do, only evidence that they understood some kind of
strategy was necessary as exemplified by this response: “Understanding how to
put multiple different ideas into a compler idea. I was able to understand the
basic concepts, but had trouble combining those concepts to solve the problem.”

Problem #2. The first theme to emerge from Problem #2 was also about
a lack of domain knowledge. Thirteen of the 31 students wrote about their lack
of understanding of course content, such as arrays. This is similar to what we
saw in Problem #1. Similarly, the second theme for Problem #2 was about task
planning. In contrast to the vague statements from Problem #1 a week earlier,
10 of 31 students responded with concrete ideas about how to aid their problem-
solving process in the future. One example was: “Writing down the goals of the
code with pen/paper, and structuring where you might need a loop using Parson’s
is something I will try to practice in future coding projects as well”.

We also tagged all student statements with one of three codes in Problems
#1 and #2: non-cognitive, cognitive, and metacognitive. A statement was non-
cognitive if students wrote things like “I don’t know.”; cognitive if the student
mentioned needing to better understand course concepts or other domain knowl-
edge; and metacognitive if the student showed a reflective stance toward their
own mental problem-solving process. We then mapped the change from Problem
#1 to #2. We believe that non-cognitive is the least desired response type, fol-
lowed by cognitive, then metacognitive. Therefore, a positive change is movement
towards metacognitive (non-cognitive to cognitive, non-cognitive to metacogni-
tive, or cognitive to metacognitive). A negative change is movement toward non-
cognitive. Neutral change is where the student gave the same type of response
both times. In total we recorded 12 positives, 7 negatives, and 13 neutrals.

5 Limitations & Future Work

In Year 1, the COVID-19 pandemic proved highly disruptive due to a switch to a
hybrid mode of teaching in the middle of the semester. Originally, we envisaged
running the task as an in-class, supervised activity, however due to the switch
some students attended class on campus while others studied remotely. We found
that the students studying remotely, and thus unsupervised, were generally less
likely to engage with course activities and abandoned some more readily. During
the session in which we ran this study, around 40% of the class either did not
engage or did not complete the tasks, resulting in less data than originally en-
visioned. Nevertheless, our allocation of students into the two groups was such

10 James Prather et al.

that a similar percentage of students in each group were studying remotely. In
Year 2, students were supervised in-class for both of the programming problems.

In Year 1, we did not randomly assign our original participant pool to the
two groups, but allocated students to them based on surname. A post-hoc anal-
ysis indicated no significant differences in the course marks of students in these
groups prior to the study commencing. Additionally, we have no data regarding
interactions between students and the interactive Parsons Problem tool. Thus,
we do not know how long students in this group spent with the Parsons Problem,
or how sophisticated their planning was prior to programming.

One avenue of future work focuses on metacognitive strategies. This involves
further investigating the use of Parsons Problems to scaffold the problem-solving
process. We introduced Abstract Parsons Problems to do this, but as discussed
in Section 2, there are many different variations of Parsons Problems. Possi-
ble questions include: Do other types of Parsons Problems cause an increase
in verbalization of metacognitive strategies when used as a pre-coding scaffold?
and Is there a similar effect with other types of planning activities or is there
something specific about Parsons Problems causing the effect? Additionally, our
findings warrant a deeper, qualitative, exploration into the types of metacogni-
tive strategies that design activities like Parsons Problems elicit.

Another avenue of future work involves scale, invigilation, and complexity.
As noted in Section 5, our sample size was constrained by the limitations of
running a live classroom study during the COVID-19 pandemic. Future work
should replicate this study at scale. This experiment could also be run as a non-
invigilated homework activity with a multi-day time window. Finally, increasing
the complexity of the study itself, including crossover designs or conducting it
longitudinally, could help establish related factors and what types of program-
ming problems benefit from this kind of activity [14].

6 Implications & Conclusions

Our original hypothesis was that novice programmers would benefit from explicit
scaffolding during the problem-solving process with higher task completion and
an increase in metacognitive behaviors. Using a Parsons Problem to provide this
metacognitive scaffolding is a novel contribution of our work. Our findings not
only support our hypothesis, but they are somewhat surprising — despite having
more time for writing code, when not presented with the Parsons Problem stu-
dents tended to be less successful at completing the programming task, and were
more likely to report being under time pressure. These findings could positively
contribute to student learning in several ways. First and foremost it provides
evidence that scaffolding learning during explicit metacognitive problem-solving
stages can benefit students.

Recent research has shown metacognition to be a critical skill for novice pro-
grammers to develop alongside their domain knowledge. These results suggest
that inserting a planning step with an interactive tool, in this case Abstract
Parsons Problems, to guide students through this stage of the problem-solving

Scaffolding Task Planning Using Abstract Parsons Problems 11

process could help to scaffold metacognitive skills in novices. Due to the lim-
itations of our study, we interpreted these findings as positive indicators that
warrant future work in metacognitive strategies, non-invigilated assignments,
and increasing the scale and complexity of future investigations.

References

10.

11.

12.

Prather, J., Becker, B.A., Craig, M., Denny, P., Loksa, D., Margulieux, L..: What do
we think we think we are doing? Metacognition and self-regulation in programming.
In: Proc. of the 2020 ACM Conference on International Computing Education
Research. p. 2a€“13. ICER 20, ACM, NY, NY, USA (2020).

Loksa, D., Ko, A.J.: The role of self-regulation in programming problem solving
process and success. In: Proc. of the 2016 ACM Conference on International Com-
puting Education Research. p. 834€“91. ICER 16, ACM, NY, NY, USA (2016).
Bergin, S., Reilly, R., Traynor, D.: Examining the role of self-regulated learning on
introductory programming performance. In: Proc. of the 1st International Work-
shop on Computing Education Research. p. 814€“86. ICER ’05, ACM, NY, NY,
USA (2005).

Roll, 1., Holmes, N.G., Day, J., Bonn, D.: Evaluating metacognitive scaffolding in
guided invention activities. Instructional Science 40(4), 691-710 (Jul 2012).
Luxton-Reilly, A., Simon, Albluwi, I., Becker, B.A., Giannakos, M., Kumar, A.N.,
Ott, L., Paterson, J., Scott, M.J., Sheard, J., Szabo, C.: Introductory programming;:
A systematic literature review. In: Proc. Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education. pp.
55-106. ITiCSE 2018 Companion, ACM, NY, NY, USA (2018).

Becker, B.A.: What does saying that ‘programming is hard’ really say, and about
whom? Commun. ACM 64(8), 27a€29 (Jul 2021).

Karvelas, 1., Li, A., Becker, B.A.: The effects of compilation mechanisms and er-
ror message presentation on novice programmer behavior. In: Proceedings of the
51st ACM Technical Symposium on Computer Science Education. p. 7594€“765.
SIGCSE 20, ACM, NY, NY, USA (2020).

Prather, J., Pettit, R., McMurry, K., Peters, A., Homer, J., Cohen, M.: Metacog-
nitive difficulties faced by novice programmers in automated assessment tools. In:
Proc. of the 2018 ACM Conference on International Computing Education Re-
search. pp. 41-50. ICER ’18, ACM, NY, NY, USA (2018).

Loksa, D., Margulieux, L., Becker, B.A., Craig, M., Denny, P., Pettit, R., Prather,
J.: Metacognition and self-regulation in programming education: Theories and ex-
emplars of use. ACM Trans. Comput. Educ. 22(4) (Sep 2022).

Bandura, A.: Perceived self-efficacy in cognitive development and functioning. Ed-
ucational psychologist 28(2), 117-148 (1993).

VanDeGrift, T., Caruso, T., Hill, N., Simon, B.: Experience report: Getting novice
programmers to THINK about improving their software development process. In:
Proceedings of the 42nd ACM Technical Symposium on Computer Science Educa-
tion. p. 4934€+498. SIGCSE '11, ACM, NY, NY, USA (2011).

Prather, J., Pettit, R., Becker, B.A., Denny, P., Loksa, D., Peters, A., Albrecht, Z.,
Masci, K.: First things first: Providing metacognitive scaffolding for interpreting
problem prompts. In: Proc. of the 50th ACM Technical Symposium on Computer
Science Education. pp. 531-537. SIGCSE '19, ACM, NY, NY, USA (2019).

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

James Prather et al.

Denny, P., Prather, J., Becker, B.A., Albrecht, Z., Loksa, D., Pettit, R.: A closer
look at metacognitive scaffolding: Solving test cases before programming. In: Proc.
of the 19th Koli Calling International Conference on Computing Education Re-
search. Koli Calling '19, ACM, NY, NY, USA (2019).

Craig, M., Petersen, A., Campbell, J.: Answering the correct question. In: Proc.
of the ACM Conference on Global Computing Education. pp. 72-77. CompEd ’19,
ACM, NY, NY, USA (2019).

Lee, P., Liao, S.N.: Targeting metacognition by incorporating student-reported con-
fidence estimates on self-assessment quizzes. In: Proc. of the 52nd ACM Technical
Symposium on Computer Science Education. pp. 431-437. SIGCSE 21, ACM, NY,
NY, USA (2021).

Loksa, D., Ko, A.J., Jernigan, W., Oleson, A., Mendez, C.J., Burnett, M.M.: Pro-
gramming, problem solving, and self-awareness: Effects of explicit guidance. In:
Proc. of the 2016 CHI Conference on Human Factors in Computing Systems. pp.
1449-1461. ACM (2016).

Loksa, D.: Explicitly Training Metacognition and Self-Regulation for Computer
Programming. Ph.D. thesis, University of Washington (2020).

Parsons, D., Haden, P.: Parson’s programming puzzles: A fun and effective learning
tool for first programming courses. In: Proc. of the 8th Australasian Conference on
Computing Education - Volume 52. p. 1574€“163. ACE ’06, Australian Computer
Society, Inc., AUS (2006).

Du, Y., Luxton-Reilly, A., Denny, P.: A review of research on Parsons problems.
In: Proc. of the 22nd Australasian Computing Education Conference. pp. 195-202.
ACE’20, ACM, NY, NY, USA (2020).

Weinman, N., Fox, A., Hearst, M.: Exploring challenging variations of Parsons
problems. In: Proc. of the 51st ACM Technical Symposium on Computer Science
Education. p. 1349. SIGCSE 20, ACM, NY, NY, USA (2020).

Garcia, R., Falkner, K., Vivian, R.: Scaffolding the design process using Parsons
problems. In: Proc. of the 18th Koli Calling International Conference on Computing
Education Research. Koli Calling ’18, ACM, NY, NY, USA (2018).

Becker, B.A., Quille, K.: 50 years of CS1 at SIGCSE: A review of the evolution of
introductory programming education research. In: Proc. of the 50th ACM Technical
Symposium on Computer Science Education. pp. 338-344. SIGCSE ’19, ACM, NY,
NY, USA (2019).

Thantola, P., Karavirta, V.: Open source widget for Parson’s puzzles. In: Proc. of
the 15th Annual Conference on Innovation and Technology in Computer Science
Education. p. 302. ITiCSE ’10, ACM, NY, NY, USA (2010).

Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Research
in Psychology 3(2), 77-101 (2006).

