

FINANCIAL TIMES

HOME WORLD US COMPANIES TECH MARKETS CLIMATE OPINION WORK & CAREERS LIFE & ARTS HTSI

Artificial intelligence (+ AddrtomyFT

Nearly 80% of British teenagers have used
generative Al

Ofcom report on digital habits finds YouTube has overtaken Facebook as UK's most visited
website

7\ |

Lo
-]
"

..;:"5' - x‘

Adoption of new technology ‘comes as second nature to Gen Z, says Ofcom € Getty Images

Daniel Thomas ¢ HOURS AGO

— q BUSINESS
— INSIDER
Thanks to Al, you don't

need a computer science
degree togetajobin
tech, IBM Al chief says

Kwan Wei Kevin Tan Jan 1, 2024, 12:02 AM ET

* Share

d Readinapp

T"]]’j‘?J

Richard Bord via Getty Images; Jaap v
Arriens/NurPhoto via Getty Images

= Fancy landing a job in tech?

®= Thanks to Al, you may not need a
computer science degree to make
it in tech, says IBM's Al chief.

= Matthew Candy told Fortune that
soft skills like critical thinking
would be more important.

y
4

\= FORTUNE

~_

/

TECH - A.l.

IBM Al chief advises people who
want a tech job in 2024 to learn the
language and creative thinking
skills you get with the liberal arts

BY RYAN HOGG
December 30, 2023 at 9:30 AM GMT

While technical skills will continue to be crucial, Candy suggests a
growing need for creative thinkers and graduates with liberal arts
backgrounds.

GETTY

|

If you're updating your resume this holiday __—"

season, you’ll no doubt consider the impact

of AI on your employability. While strong
coding skills are valuable, don’t

BUSINESS

= Q INSIDER

(e)
A Nobel Prize-winning economist
warned students against rushing
into STEM to get Al jobs, saying
they may sow their 'own seeds of
self-destruction’

Sawdah Bhaimiya Jan 3, 2024, 6:16 AM ET

Cezaro De Luca/Europa Press via Getty Images

= An economics professor warned students
against rushing into STEM to get Al jobs.

= He said that some of the workers in IT jobs
that are advancing Al may be replaced by Al

= Instead, he said soft skills like empathy and
communication are going to thrive in the
future.

SR

From "Ban It Till We Understand It" to "Resistance is Futile":
How University Programming Instructors Plan to Adapt as More

Students Use Al Code Generation and Explanation Tools such as
ChatGPT and GitHub Copilot

Sam Lau
UC San Diego
La Jolla, California, USA
lau@ucsd.edu

Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It m}'fﬂ' .
ation Toofs such as ChatGPT and GitHub Copilot. In Proceedings of the 2023
“ACM Conference on Internatlohal Computlng Education Resear

Adapt as More Students Use Al Code Generatlon and Explan

’ \\York NY, USA, 106—-121. .

g‘-»‘iel.‘-«? L3

uf%v_» 1

Philip J. Guo
UC 5an Diego
La Jolla, California, USA

pg@ucsd.edu

g Vb
, r“:l* ¢ «.r‘g'&_ ‘_*' ; “t’:‘&‘ﬂ »
. - .& e f ‘_‘_,:. .%;g 3 ; N . s ¢
P ST e

i

sistance is Futile": How Ur; f*é?sny Programming Instructors Plan to

arch - Volume 1 (ICER '23), Vol. 1. Association for Computing Machinery, New

"-.

e gt >

L

A

https://doi.org/10.1145/3568813.3600138

G e e . o , 5
s . : .._.-"- ;"4‘? % 0 : :'- .

¥

-
3 %,

<L ol e i 5& 3 | f
VER | -;;gug;teaghiﬁg practices were pesfect in the first

vhat are the chances'that either of these ro&ids* .

g willtake ws wl‘fe#evl/eé uld be?s,

%

¥
ol e T AR e e S
E?"‘“ B "@fh > @ g ﬁ"%ﬁ’m o S,

A Embrace-it Close ™ *% 3 e fﬁ

. s "11

e

Ne have nearly infinite

_choices and many contexts —

pry ,‘_.
e el

Hello Wbrld in Mark 1 Autocode (c 1950s)

L= 1500

el =t T I

Y1501 = 'en©

00— .1

e e]!

Y1504 = 'o' « {7 el Wo
005 =" T '

Y1506 = "W'

ER U= 'O

ges — 'r'

o — "1

el 0 = "'d’

o U R B

BN U character to denote end of string

R RN T L

Heilo World in Fortran (c 1960s)

el iie | LoWor dd.i\, el
BN 'Hello World!'
NEREPROGCRAM HelloWorld

Heﬁ‘llo World in Pascal (1970s)

program HelloWorld;
begin . - He\\o\\JMH
el ('Hello World!');

e

Hello Worldin C (1980s)

e 1 ude <stdio,h$
H€ \\ A \\J O(\ <\

0 PROGRAMMING
EEE(tHel Lo World!\n"); LANGUAGE

«Y\'Z’“\é

BN el 0,
AT

Hello World in C++ (1990s)

#include <iostream>

{ « - Helle Wor\d

N main ()

B T'Hel 1o World!" << std::endl;
F=tlurn B;:

T
bl 80 %

Héllo World in Java (200Xs)

bl ic class HelloWorld {
REBNEREREtatic void main (BEximo] args) f
et oI ntln ("Hello World!");

J

A LR
gt

Heilo World in Pytho

n (201Xs)

. : He\\o \\JO f\A
I (el 1o World!")

. He\\o \\JO r\$
WEst," I skipped one

e 50 years ago

Hello Woﬁrld in (one flavour of) Lisp (1960s)

~ " Hells Wo\d
(Prawmt "Hello o ")

‘J You
write Hello World! in C#

(©) ChatGPT
To write a simple "Hello World!" program in C#, you would create a console application

with the following code:

csharp () Copy code
{
{
(string[] args)
{
Console.WritelLine();
}
}

Hello World

Hello Wor\)

in 2023

ChatGPT

This code consists of:

. Using Directive: 'using System; " - This includes the System namespace which
contains fundamental classes for working with basic system functions.

. Namespace Declaration: "namespace HelloWorld' - This encapsulates your classes

and methods. Here, 'HelloWorld' is the chosen namespace name. H e l l O ‘N O r :l_ d

. Class Declaration: "class Program’ - This declares a class named 'Program’. \ \ \\ \ \J \
e \\a WO«

4. Main Method: "static void Main(string[] args) ' - Thisis the entry point of your . 2 O 2 3
C# program. When the program starts, it looks for the Main method and begins I n
execution from there.

5. Console WriteLine Method: "Console.WriteLine("Hello World!"); " - Thisline
outputs the text "Hello World!" to the console.

To run this program, you would need to compile and execute it using a C# compiler,
which is typically done in an Integrated Development Environment (IDE) like Visual
Studio or Visual Studio Code. When run, it displays "Hello World!" in the console

window.

Why am | telling you this?

e Hello World says a lot about how we
approach programming education

* Let’s go back to 1978 with Kernighan &
Ritchie

CHAPTER 0

4 THE C PROGRAMMING LANGUAGE «@

ways. Nonetheless, C has proven to be an extremely effective and expres-
sive language for a wide variety of programming applications.

The rest of the book is organized as follows. Chapter 1 is a tutorial
introduction to the central part of C. The purpose is to get the reader
started as quickly as possible, since we believe strongly that the only way to
learn a new language 1S to write programs m it. The tutorial does assume a

PRENTICE-HALL SOFTWARE SEHIES\‘“—-'

But, | just wrote Hello World! In C#

Ordid I?

Really, | just prompted ChatGPT to
write it for me.

Hmm.

B COMMUNICATIONS

»
- AT
.

OF THE
e ACM

stelesheet® HOME CURI
ok, O ,‘"””ﬂf
? " N tyleshest
e re O \Ne go ro I I I e re Home / Magazine Archive / January 2023 (Vol. 66, No.

b oihun... -
— gy

.

VIEWPOINT

Is programming dead? = The End of Programming

-~ By Matt Welsh
Mt Communications of the ACM, January 2023, Vol. 66 No.
1 10.1145/3570220

s the computing degree dead? - = JEi-Es

VIEW AS: s N &

[came

such as

s ﬂ‘i’? A

2

i!d}jf{mg‘ A i R
& ey RN 4

i

o

sl

7 ey Fading Away way 4 2724412

&F IV

e £ = n

@ 33Ec
xx - T QQ4°¢

LA

*> yee:
>
S
=
-

L 3]
e

-

:
&
-
-
£
b
®
pe

e PO A4AMSE a

[oa

MR T
R+
-y "

abiine by f iy priet
marnin-bottomy 1oog

ssss ,

@ saEs
xx - T QQ4°¢

sl
[
7 e Fading Away way 4 2724400

& Tk

£ - "

,‘. E 3 sTeT -
oft 2
sw 2
3
e
-- -

« 8,505 items published at the SIGCSE Technical Symposium
from1970-2023

« 257,896 citations
« 9,741,018 downloads

« How many widely used practice innovations can you think of?

« How many of these do you use regularly?

Computing Education Research

The first two* | thought of off the top of my head:

1. Pair Programming
2. Parsons Problems

What do these mean in the era of Generative Al?

*Of course , there are more. But how many?

Computineg Education Research

What about other not-just-computing education innovations like:

1. Mastery Learning
2. Personalisedlearning

What do these mean in the era of Generative Al?
We'll get back to that later.

pair programming pAlr programming today
yesterday ‘me & my Al’

I'm stuck, any ideas? ? Terminal Help
Try this...

® mainx_mulbply.py @

Thanks!

This is not a one-or-the-other choice. We can combine these.
Call it the new Teamwork.

Evaluating the Performance of Code Generation Models for
Solving Parsons Problems With Small Prompt Variations

Brent Reeves
Abilene Christian University
Abilene, Texas, USA
brent.reeves@acu.edu

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Bailey Kimmel
Abilene Christian University
Abilene, Texas, United States

blk20c@acu.edu

Sami Sarsa
Aalto University
Espoo, Finland
sami.sarsa@aalto.fi

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Garrett Powell
Abilene Christian University
Abilene, Texas, United States

gbpl8a@acu.edu

James Prather
Abilene Christian University
Abilene, Texas, USA
james.prather@acu.edu

Arto Hellas
Aalto University
Espoo, Finland
arto.hellas@aalto.fi

Juho Leinonen
University of Auckland
Auckland, New Zealand

juho.leinonen@auckland.ac.nz

“our results suggest that Parsons problems are not as easy for large
language models to solve as code writing problems. Thus, they could
be considered to be more reliable for assessing students’ performance,
in a setting where students could use [Generative Al]”

This is merely a first step.

Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A. Becker, Arto Hellas, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating the Performance of Code
Generation Models for Solving Parsons Problems With Small Prompt Variations. In Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 1
(ITiCSE 2023), July 8-12, 2023, Turku, Finland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3587102.3588805

https://doi.org/10.1145/3587102.3588805

r

4

The Raspberry Pi Foundation invites you Having problems viewing this
to our next seminar on 9 January email? View online

Using generative
Al to create
personalised
Parson's Problems
and explanations

° Dr Barbara Ericson &
@ Xinying Hou

9 January 2024,
17:00 - 18:30

7] GMT (check the start time in
your timezone with this world

clock tool)

0 Pre-register for this
@ seminar on Zoom

E + Google Calendar ﬁ + Apple / Outlook Calendar

If you have any questions about our research seminars, just let us
know at research@raspberrypi.org.

Ok, but Parsons Problems and Pair Programming have
been around a while. Where do we go from here?

- Cheating!!!! Al could change:

- How do we assess?
e teach

e teach
e teach
we teach.

sk

Both are old problems.
The first already has
solutions. The second
only has approximations.

X
GO

It seems we are starting to
move in this direction now?

Reshape the way
programming (and
other things) are
learned, and the whole
traditional computing
BSc curriculum might
change

- This could change who is, and who is not, attracted to computing

- This could be a big agent of change in Broadening Participation in Computing

- This could narrow the computing divide

- We may not be able to control this, but we can influence it

*www.brettbecker.com/publications/#iticse23keynote

https://www.brettbecker.com/publications/#iticse23keynote

Learning to Program, 2024-style

Out: writing code (being the only way to learn) - sorry K&R

In: reading, comprehending, tracing, refactoring, design, creativity,
debugging, teamwork, collaboration, soft skills, ethics, ..., ..., ...

What about the “thinkings” — computational thinking, algorithmic thinking?

-

=

Does Al Kill These Computing-centric Thinkings?

1

By

; il 3 i N

e, M b 1l
| g VIR -
. it i o g
= g | Vi
4'\.,‘5' -ho
I

3 = - ' e i
. ke e | . o Skl u | e :
C '_“- -.-_‘ k L) E L |- | E Bl - . . L
5) i L R i o9 il F i H 1 A AT —
0 \We « | 1UCN Prof 5SS TC C Se.darenas
ATAVA | 1 1 U ! | -
ve g T % (@) Pl S) i oy
FUET T Mgt 0 -] . Ll S T W1
E gl f e L R | i 1 4 1N
g | 3 L L " e S YR i f\ - b 1 i
> . o 5 o5 LSRN L
2 d 7 5 1 iy e |
n v e F./' I £ 2 ! 2 IR !
. " S ! . ol Lo [!
"4
-

-

e p | N - - -
; A 3 Y - -
- . ¥ A

" . ‘ 4 j—h’—-
——

..‘2 "

Why |s |t co

F

mmon to think CS s “di

|

-~

| uquely
¢/ dlfferen1

B e | ——
B T —

—— e .

differentf o7

!
. " g i ‘
. § R -
T t00. - i
L— - - < \
b ¥ i b f o {f
, — ./.'v/ ' . y |a ::
('.,—.:-i ' ',";; ™ f o b .
‘o v - - F'd f'._f ¥ .
] ‘) : | .')
o . / &‘\ - \1"
[i l " “.‘: 5
- /I "=) (14 13

=

-—

SN il ™

i\r ‘
‘\

Creat : ,

hese are
across al

omputmg (mug
tutoring \

|Iew ret nkm o t5|d

RS X '{’

rltlggf th\l 1

‘?

"“G“" g “.":; R
. LR T e
. g 3 ;_~ A‘: :

e dISC Ine

—./ h’;

retty unlversally applicable (and useful),
d|5C|pI|nes including but not limitedto.
like mastery learning and one-on- -one .
| we will get ba’c'ETo)

Not just about pregrarmmtre computing

We need to be thinking bigger.

Problem solving, Society, Economy, Efficiency, Information,
Communication, Teamwork, Ethics, Values...

Being (more) human, in a society of humans (and Als).

Maybe we can
reach for this?

It's At Least As Important

To Be A Good Person as |
a Good Programmer

Titus Winters, ITiCSE 2022 Keynote

oA

_ .

e . e]
it

Back to our practice: What's happening now
(that we haven’t done before)?

Leo Porter, after using his book in his CS1 class,
Fall 2023:

“Happily, the skills we need to teach now
are exactly the skills we should have been
teaching all along...”

“Rather than writing code from scratch, we want
to incorporate Al so we can teach more advanced
material early on in the curriculum.” K%

today.ucsd.edu/story/in-this-era-of-ai-will-everyone-be-a-programmer

LEARN

Al-Assisted

PYTHON PROGRAMMING

With Copilot and ChatGPT

Leo Porter « Daniel Zingaro

1 | YT

https://today.ucsd.edu/story/in-this-era-of-ai-will-everyone-be-a-programmer

LEARN

Al-Assisted

“Reading code is going to be extremely important, PYTHON PROGRAMMING

even more so than before. Testing, strong debugging
skills, problem decomposition — these skills will be
highly valued in the workforce.”

With Copilot and ChatGPT

Leo Porter « Daniel Zingaro

“The typical way we used to teach is not viable
anymore.”

‘LLMs lower the barrier for programming and may M i
help us bring in a broader and more diverse group of o
students and professionals to the field’

today.ucsd.edu/story/in-this-era-of-ai-will-everyone-be-a-programmer

https://today.ucsd.edu/story/in-this-era-of-ai-will-everyone-be-a-programmer

Back to computing practice: What's happening
now (that we haven’t done before)?

* Generative Al imparts unigue metacognitive demands on the learner.
It can accelerate progress, but also present blind alleys. It requires a
solid problem specification, description, and verification.

 What does that sound like? :ﬁ

e Sounds like what we say programming really is. Do we ever just say
“programming is writing computer code”? So why is it so often taught
and assessed that way?
y Og@
AO)

o

* “Prompt Problems” are designed to help students learn how to write
effective prompts. It’s more than a copy/paste of the problem itself.

* Promptly is a tool that hosts a repository of Prompt Problems and supports
the automated evaluation of the prompt-generated code.

* The design (ideally) encourages students to specify and decompose the
problem, read the code generated, compare it with the test cases to
discern why it is failing (if it is), and then update their prompt accordingly.o@%s@

o

0 Class Registration o Exercise #1

r
[
(¥
M
Tk
rJ
m
T
[
A
fal]

1t
el

Enter your name: Bob
Hello Bob

Visual representation of
" problem (in this case, an

animation illustrates user

interaction with program)

Write me a Python program that asks the user to enter their name, and then prints the word "Hello™ followed by
a space, followed by their name

ity Gt pawost s \ Prompt entry
CLICK HERE TO ASK CHATGPT!

LLM response
ChatGPT response: /

Code Running response:

Vo dass A Laps 3 0 < Execution output (in this case, a og&
success message as all tests pass) OX@%

BACK MEXT

 Students described engaginF in metacognitive aspects of learning
such as planning their problem solving approach and monitoring
whether they understood what they were doing.

* This increased awareness was also exemplified by students who
flescr_ibed how the tool might better support reflecting on their
earning.

* (We think) Prompt Problems are a useful way to teach programming
concepts and encourage metacognitive programming skills.

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Prompt
Problems: A New Programming Exercise for the Generative Al Era. In Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2024), March 20-23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3626252.3630909 (DOI not active until March). Preprint available: https://arxiv.org/abs/2311.05943 Sﬁﬁ
o)
N

e

https://doi.org/10.1145/3626252.3630909
https://arxiv.org/abs/2311.05943

The Robots are Here:

Navigating the Generative Al Revolution in Computing Education

James Prather
Abilene Christian University
Abilene, Texas, USA
james.prather@acu.edu

Brett A. Becker®
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Hieke Keuning
Utrecht University
Utrecht, The Netherlands
h.w.keuning@uu.nl

Andrew Luxton-Reilly
University of Auckland
Auckland, New Zealand

andrew@cs.auckland.ac.nz

Raymond Pettit
University of Virginia
Charlottesville, Virginia, USA
raymond.pettit@virginia.edu

Paul Denny”
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Ibrahim Albluwi
Princess Sumaya University for
Technology
Amman, Jordan
Lalbluwi@psut.edu.jo

Natalie Kiesler
DIPF Leibniz Institute for Research
and Information in Education
Frankfurt am Main, Germany
kiesler@dipf.de

Stephen MacNeil
Temple University
Philadelphia, Pennsylvania, USA
stephen.macneil@temple.edu

Brent N. Reeves
Abilene Christian University
Abilene, Texas, USA
brent.reeves@acu.edu

Juho Leinonen’
University of Auckland
Auckland, New Zealand
juho.leinonen@auckland.ac.nz

Michelle Craig
University of Toronto
Toronto, Canada
meraig@cs.toronto.edu

Tobias Kohn
Karlsruhe Institute of Technology
Karlsruhe, Germany
tobias. kohn@kit.edu

Andrew Petersen
University of Toronto Mississauga
Mississauga, Canada
andrew.petersen@utoronto.ca

Jaromir Savelka
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

jsavelka@cs.cmu.edu

James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi, Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew

Luxton-Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves, and Jaromir Savelka. 2023. The Robots Are Here: Navigating .

the Generative Al Revolution in Computing Education. In Proceedings of the 2023 Working Group Reports on Innovation and Technology in %
\>

Computer Science Education (ITiCSE-WGR '23). Association for Computing Machinery, New York, NY, USA, 108-159.
https://doi.org/10.1145/3623762.3633499

https://doi.org/10.1145/3623762.3633499

> up in Communications of
.f\February 3_9__24

Computing Education in the Era of Generative Al

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

James Finnie-Ansley
The University of Auckland
Auckland, New Zealand
james finnie-ansley@auckland.ac.nz

Andrew Luxton-Reilly
The University of Auckland
Auckland, New Zealand
aluxton-reilly@auckland.ac.nz

James Prather
Abilene Christian University
Abilene, Texas, USA
Jjames.prather@acu.edu

Arto Hellas
Aalto University
Espoo, Finland
arto.hellas@aalto.fi

Brent N. Reeves
brent.reeves@acu.edu
Abilene Christian University
Abilene, Texas, USA

Sami Sarsa
Aalto University
Espoo, Finland
sami.sarsa@aalto.fi

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Juho Leinonen
Aalto University
Espoo, Finland
juho.2 leinonen@aalto.fi

Eddie Antonio Santos
University College Dublin
Dublin, Ireland
eddie.santos@ucdconnect.ie

———— SSSSS—

arxiv.org/abs/2306.02608

https://arxiv.org/abs/2306.02608

Assessment

* |n too many cases today, assessment is not optimal.

* It is too often based on the product, not the process of creating,
developing, and arriving at the product

* j.e. students writing code and us assessing their programs.

* Key: Al should be employed not to make assessment “better” but to
completely reboot what we think of in terms of assessment (which
could make it even better).

Bigger than Computing

We know that bigger-than-computing ideas work, like Mastery Learning
and one-on-one (personalised) tutoring - See Bloom, 1980s, etc.

However, these don’t scale (at all) with this:

Catalysing our Practices

* However, Al could very well make advancements such as virtual TAs and
personalised learning assistants viable soon.

* This should allow ideas like Mastery Learning and Personalised Tutoring to
scale.

* We should leverage Al — but this is not a simple binary embrace/ban thing.
We need to think about it, not in terms of improving existing practices, but
rethinking and rebooting all our practices.

Conclusions

e We should not simply change our existing practices because of Al.

* We need to use Al as a catalyst to reboot our practices. This will involve:

thinking that Computer Science is more different than any other discipline

Not
* Not looking at this as a binary ban/embrace choice — question all practice first

Employing the “bigger than computing” solutions that Al will present, while
innovating computing-specific solutions in addition

Helping our students be human thinkers and problem solvers

Humans co-existing with Al @@

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Two roads diverged in an AI wood…
	Slide Number 6
	Even if our teaching practices were perfect in the first place what are the chances that either of these roads will take us where we should be?
	Practically Zero.
	We have nearly infinite choices and many contexts
	Let’s get back to basics
	Hello World in Mark 1 Autocode (c 1950s)
	Hello World in Fortran (c 1960s)
	Hello World in Pascal (1970s)
	Hello World in C (1980s)
	Hello World in C++ (1990s)
	Hello World in Java (200Xs)
	Hello World in Python (201Xs)
	Slide Number 18
	Hello World in (one flavour of) Lisp (1960s)
	Slide Number 20
	Slide Number 21
	Why am I telling you this?
	1978
	Slide Number 24
	Slide Number 25
	 Where do we go from here?
	Where do we go from here?
	Slide Number 28
	Slide Number 29
	Computing Education Research
	Computing Education Research
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Ok, but Parsons Problems and Pair Programming have been around a while. Where do we go from here?
	Slide Number 36
	Learning to Program, 2024-style
	Does AI Kill These Computing-centric Thinkings?
	Why is it common to think CS is “different”?
	While we’re thinking outside the discipline
	Not just about programming computing
	Slide Number 42
	Back to our practice: What’s happening now �(that we haven’t done before)?
	Slide Number 44
	Back to computing practice: What’s happening now (that we haven’t done before)?
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Assessment
	Bigger than Computing
	Slide Number 53
	Catalysing our Practices
	Conclusions

