
Brett A. Becker
University College Dublin
• brettbecker.com
• brett.becker@ucd.ie
• @brettabecker

Rebooting

Teaching

Practice

AI in Computing Education

Two roads diverged in an AI wood…

Ban-it Boulevard

Embrace-it Close

Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Resistance is Futile": How University Programming Instructors Plan to
Adapt as More Students Use AI Code Generation and Explanation Tools such as ChatGPT and GitHub Copilot. In Proceedings of the 2023
ACM Conference on International Computing Education Research - Volume 1 (ICER '23), Vol. 1. Association for Computing Machinery, New
York, NY, USA, 106–121. https://doi.org/10.1145/3568813.3600138

https://doi.org/10.1145/3568813.3600138

Even if our teaching practices were perfect in the first
place what are the chances that either of these roads

will take us where we should be?

Embrace-it Close

Ban-it Boulevard

Practically Zero.

We have nearly infinite
choices and many contexts

Let’s get back to basics

Hello World in Mark 1 Autocode (c 1950s)
T1 = 1500
Y1500 = 'H'
Y1501 = 'e'
Y1502 = 'l'
Y1503 = 'l'
Y1504 = 'o'
Y1505 = ' '
Y1506 = 'W'
Y1507 = 'o'
Y1508 = 'r'
Y1509 = 'l'
Y1510 = 'd'
Y1511 = '!'
Y1512 = 0 ; null character to denote end of string

PRINT T1
STOP

Hello World in Fortran (c 1960s)

PROGRAM HelloWorld
 PRINT *, 'Hello World!'
END PROGRAM HelloWorld

Hello World in Pascal (1970s)

program HelloWorld;
begin
 writeln('Hello World!');
end.

Hello World in C (1980s)

#include <stdio.h>

main() {
 printf("Hello World!\n");
}

Hello World in C++ (1990s)

#include <iostream>

int main() {
 std::cout << "Hello World!" << std::endl;
 return 0;
}

Hello World in Java (200Xs)

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Hello World in Python (201Xs)

print("Hello World!")

Wait, I skipped one
from ~50 years ago

Hello World in (one flavour of) Lisp (1960s)

(print "Hello World!")

Hello World
in 2023

Hello World
in 2023

Why am I telling you this?

• Hello World says a lot about how we
approach programming education

• Let’s go back to 1978 with Kernighan &
Ritchie

1978

But, I just wrote Hello World! In C#

Or did I?

Really, I just prompted ChatGPT to
write it for me.

Hmm.

If I didn’t write it,
does that mean

that Generative AI
and learning

programming are
not compatible?

OR

Do we need
to look at
learning

programming
differently?

Where do we go from here?

Is programming dead?

Is the computing degree dead?

Do we need to change our practices because of
Generative AI (and that will save the day)?

Where do we go from here?

I argue that we needed to change our practices (by and
large) before Generative AI ate the internet for breakfast

and started generating stuff for us.

We shouldn’t simply change or adapt our practices because of
Generative AI.

We should take this as an opportunity to reshape them completely.

We need to use AI as a catalyst to reboot computing education practice.

• 8,505 items published at the SIGCSE Technical Symposium
from 1970-2023

• 257,896 citations
• 9,741,018 downloads

• How many widely used practice innovations can you think of?

• How many of these do you use regularly?

Computing Education Research

The first two* I thought of off the top of my head :

1. Pair Programming

2. Parsons Problems

What do these mean in the era of Generative AI?

*Of course , there are more. But how many?

Computing Education Research

What about other not-just-computing education innovations like:

1. Mastery Learning

2. Personalised learning

What do these mean in the era of Generative AI?
We’ll get back to that later.

pair programming
yesterday ‘me & my AI’

pAIr programming today

This is not a one-or-the-other choice. We can combine these.
Call it the new Teamwork.

“our results suggest that Parsons problems are not as easy for large
language models to solve as code writing problems. Thus, they could

be considered to be more reliable for assessing students’ performance,
in a setting where students could use [Generative AI]”

This is merely a first step.

Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A. Becker, Arto Hellas, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating the Performance of Code
Generation Models for Solving Parsons Problems With Small Prompt Variations. In Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 1
(ITiCSE 2023), July 8–12, 2023, Turku, Finland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3587102.3588805

https://doi.org/10.1145/3587102.3588805

Ok, but Parsons Problems and Pair Programming have
been around a while. Where do we go from here?

AI could change:

how we teach
what we teach
when we teach

whom we teach.

It seems we are starting to
move in this direction now?

- Cheating!!!!
- How do we assess?

Both are old problems.
The first already has
solutions. The second
only has approximations.

Reshape the way
programming (and
other things) are

learned, and the whole
traditional computing
BSc curriculum might

change
- This could change who is, and who is not, attracted to computing
- This could be a big agent of change in Broadening Participation in Computing
- This could narrow the computing divide
- We may not be able to control this, but we can influence it

*www.brettbecker.com/publications/#iticse23keynote

https://www.brettbecker.com/publications/#iticse23keynote

Learning to Program, 2024-style

Out: writing code (being the only way to learn) - sorry K&R

In: reading, comprehending, tracing, refactoring, design, creativity,
debugging, teamwork, collaboration, soft skills, ethics, …, …, …

What about the “thinkings” – computational thinking, algorithmic thinking?

Does AI Kill These Computing-centric Thinkings?

No. (I think. Probably not. I guess)

Which is good, because we still have much progress to make in these arenas

Maybe AI can provide the spark we need to really ignite them.

(That reminds me of something…)

Why is it common to think CS is “different”?

Hypothesis:

CS is not
uniquely
different
to other

disciplines.
We are

normally
different.

Proof:

They all
think they

are uniquely
different

too.

While we’re thinking outside the discipline

What about
• Design thinking?
• Creative thinking?
•Critical thinking?

These are pretty universally applicable (and useful),
across all disciplines, including but not limited to

computing (much like mastery learning and one-on-one
tutoring which we will get back to).

Not just about programming computing

We need to be thinking bigger.

Problem solving, Society, Economy, Efficiency, Information,
Communication, Teamwork, Ethics, Values…

Being (more) human, in a society of humans (and AIs).

Maybe we can
reach for this?

Titus Winters, ITiCSE 2022 Keynote

Back to our practice: What’s happening now
(that we haven’t done before)?

Leo Porter, after using his book in his CS1 class,
Fall 2023:

“Happily, the skills we need to teach now
are exactly the skills we should have been
teaching all along…”

“Rather than writing code from scratch, we want
to incorporate AI so we can teach more advanced
material early on in the curriculum.”

today.ucsd.edu/story/in-this-era-of-ai-will-everyone-be-a-programmer

https://today.ucsd.edu/story/in-this-era-of-ai-will-everyone-be-a-programmer

“Reading code is going to be extremely important,
even more so than before. Testing, strong debugging
skills, problem decomposition – these skills will be
highly valued in the workforce.”

“The typical way we used to teach is not viable
anymore.”

‘LLMs lower the barrier for programming and may
help us bring in a broader and more diverse group of
students and professionals to the field’

today.ucsd.edu/story/in-this-era-of-ai-will-everyone-be-a-programmer

https://today.ucsd.edu/story/in-this-era-of-ai-will-everyone-be-a-programmer

Back to computing practice: What’s happening
now (that we haven’t done before)?

• Generative AI imparts unique metacognitive demands on the learner.
It can accelerate progress, but also present blind alleys. It requires a
solid problem specification, description, and verification.

• What does that sound like?

• Sounds like what we say programming really is. Do we ever just say
“programming is writing computer code”? So why is it so often taught
and assessed that way?

• “Prompt Problems” are designed to help students learn how to write
effective prompts. It’s more than a copy/paste of the problem itself.

• Promptly is a tool that hosts a repository of Prompt Problems and supports
the automated evaluation of the prompt-generated code.

• The design (ideally) encourages students to specify and decompose the
problem, read the code generated, compare it with the test cases to
discern why it is failing (if it is), and then update their prompt accordingly.

• Students described engaging in metacognitive aspects of learning
such as planning their problem solving approach and monitoring
whether they understood what they were doing.

• This increased awareness was also exemplified by students who
described how the tool might better support reflecting on their
learning.

• (We think) Prompt Problems are a useful way to teach programming
concepts and encourage metacognitive programming skills.

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Prompt
Problems: A New Programming Exercise for the Generative AI Era. In Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2024), March 20–23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3626252.3630909 (DOI not active until March). Preprint available: https://arxiv.org/abs/2311.05943

https://doi.org/10.1145/3626252.3630909
https://arxiv.org/abs/2311.05943

James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi, Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew
Luxton-Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves, and Jaromir Savelka. 2023. The Robots Are Here: Navigating
the Generative AI Revolution in Computing Education. In Proceedings of the 2023 Working Group Reports on Innovation and Technology in
Computer Science Education (ITiCSE-WGR '23). Association for Computing Machinery, New York, NY, USA, 108–159.
https://doi.org/10.1145/3623762.3633499

https://doi.org/10.1145/3623762.3633499

arxiv.org/abs/2306.02608

Coming up in Communications of the ACM
February 2024

https://arxiv.org/abs/2306.02608

Assessment

• In too many cases today, assessment is not optimal.

• It is too often based on the product, not the process of creating,
developing, and arriving at the product

• i.e. students writing code and us assessing their programs.

• Key: AI should be employed not to make assessment “better” but to
completely reboot what we think of in terms of assessment (which
could make it even better).

Bigger than Computing

We know that bigger-than-computing ideas work, like Mastery Learning
and one-on-one (personalised) tutoring - See Bloom, 1980s, etc.

However, these don’t scale (at all) with this:

Yet.

Catalysing our Practices

• However, AI could very well make advancements such as virtual TAs and
personalised learning assistants viable soon.

• This should allow ideas like Mastery Learning and Personalised Tutoring to
scale.

• We should leverage AI – but this is not a simple binary embrace/ban thing.
We need to think about it, not in terms of improving existing practices, but
rethinking and rebooting all our practices.

Conclusions

• We should not simply change our existing practices because of AI.
• We need to use AI as a catalyst to reboot our practices. This will involve:

• Not thinking that Computer Science is more different than any other discipline

• Not looking at this as a binary ban/embrace choice – question all practice first

• Employing the “bigger than computing” solutions that AI will present, while
innovating computing-specific solutions in addition

• Helping our students be human thinkers and problem solvers

• Humans co-existing with AI

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Two roads diverged in an AI wood…
	Slide Number 6
	Even if our teaching practices were perfect in the first place what are the chances that either of these roads will take us where we should be?
	Practically Zero.
	We have nearly infinite choices and many contexts
	Let’s get back to basics
	Hello World in Mark 1 Autocode (c 1950s)
	Hello World in Fortran (c 1960s)
	Hello World in Pascal (1970s)
	Hello World in C (1980s)
	Hello World in C++ (1990s)
	Hello World in Java (200Xs)
	Hello World in Python (201Xs)
	Slide Number 18
	Hello World in (one flavour of) Lisp (1960s)
	Slide Number 20
	Slide Number 21
	Why am I telling you this?
	1978
	Slide Number 24
	Slide Number 25
	 Where do we go from here?
	Where do we go from here?
	Slide Number 28
	Slide Number 29
	Computing Education Research
	Computing Education Research
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Ok, but Parsons Problems and Pair Programming have been around a while. Where do we go from here?
	Slide Number 36
	Learning to Program, 2024-style
	Does AI Kill These Computing-centric Thinkings?
	Why is it common to think CS is “different”?
	While we’re thinking outside the discipline
	Not just about programming computing
	Slide Number 42
	Back to our practice: What’s happening now �(that we haven’t done before)?
	Slide Number 44
	Back to computing practice: What’s happening now (that we haven’t done before)?
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Assessment
	Bigger than Computing
	Slide Number 53
	Catalysing our Practices
	Conclusions

