
Using Large Language Models to Enhance
Programming Error Messages

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

Sami Sarsa
Aalto University
Espoo, Finland

sami.sarsa@aalto.fi

Brent Reeves
Abilene Christian University

Abilene, Texas, USA
brent.reeves@acu.edu

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

James Prather
Abilene Christian University

Abilene, Texas, USA
james.prather@acu.edu

Brett A. Becker
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

ABSTRACT
A key part of learning to program is learning to understand pro-
gramming error messages. They can be hard to interpret and iden-
tifying the cause of errors can be time-consuming. One factor in
this challenge is that the messages are typically intended for an
audience that already knows how to program, or even for program-
ming environments that then use the information to highlight areas
in code. Researchers have been working on making these errors
more novice friendly since the 1960s, however progress has been
slow. The present work contributes to this stream of research by
using large language models to enhance programming error mes-
sages with explanations of the errors and suggestions on how to
fix the error. Large language models can be used to create useful
and novice-friendly enhancements to programming error messages
that sometimes surpass the original programming error messages
in interpretability and actionability. These results provide further
evidence of the benefits of large language models for computing
educators, highlighting their use in areas known to be challeng-
ing for students. We further discuss the benefits and downsides of
large language models and highlight future streams of research for
enhancing programming error messages.

CCS CONCEPTS
• Social and professional topics→ Computing education; • Com-
puting methodologies→ Natural language generation.

KEYWORDS
AI; Codex; compiler error messages; large language models; pro-
gramming error messages; syntax error messages

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE ’23, March 15-18, 2023, Toronto, CA
© 2023 Copyright held by the owner/author(s).

ACM Reference Format:
Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James
Prather, and Brett A. Becker. 2023. Using Large LanguageModels to Enhance
Programming Error Messages. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education (SIGCSE ’23). ACM, New York,
NY, USA, 7 pages.

1 INTRODUCTION
Programming Error Messages (PEMs) can be notoriously difficult
to decipher, especially for novices [31], possibly to the extent that
they contribute ot the perception that programming is overly chal-
lenging [5]. Eye tracking studies reveal that novices read error
messages and spend a substantial amount of programming time
trying to understand them [4]. Instructors report that they spend
a considerable amount of time helping novices with these often
cryptic messages [14, 29, 30, 34]. It is also known that error message
presentation affects novice programming behaviour [21]. For over
six decades, researchers have attempted to improve these messages,
and still there is a call for more work on the matter [6]. Some recent
attempts have been made to put error messages into more natural
language by focusing on an increase in readability [7, 16]. This has
been shown to improve student understanding of error messages
and the number of successful code corrections [15]. While it is clear
that increasing the readability of PEMs is helpful to novices, doing
so at scale, and across languages, remains a challenge.

Very recent work on using large language models in computing
education have already produced promising results. One study re-
ported that Codex – built on top of GPT-3 (see Section 2.2) – could
solve introductory programming problems, and ranked Codex in
the top quartile when compared to a cohort of actual students in
a large introductory programming course [17]. Tools like Codex
are able to generate new programming assignments [33] and code
explanations [27] when provided examples. Such tools demonstrate
the impressive interpretive power of very recent large language
models that may have the potential to improve the readability of
input text. In this paper, we investigate whether large language

https://orcid.org/0000-0001-6829-9449
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0000-0002-7277-9282
https://orcid.org/0000-0001-5781-1136
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0003-2807-6042
https://orcid.org/0000-0003-1446-647X


SIGCSE ’23, March 15-18, 2023, Toronto, CA Leinonen, Hellas, Sarsa, Reeves, Denny, Prather, and Becker

models can be utilized to parse non-compiling code and the pro-
gramming errors generated from that code to output PEMs that are
more readable than those generated by the compiler/interpreter.
RQ1 How well can Codex explain different error messages?
RQ2 What is the quality of the code fix suggestions that Codex

generates?

2 BACKGROUND
2.1 Programming Error Messages
Programming error messages (PEMs) encompass syntax error mes-
sages, compiler error messages, and other diagnostic messages that
are produced by compilers or interpreters indicating that the input
code violates the specification of a language [8]. Researchers and
instructors have reported PEMs to be a difficulty for students since
at least 1965 [32]. More than fifty years later, PEMs are still a barrier
to progress for those learning to program [6], and this has led to
various efforts for improve their usability.

One such avenue of work has involved intercepting messages
between the compiler and the user and altering their wording or
presentation. One of the many known issues with error messages
generated by compilers and interpreters is poor readability due to
factors such as poor use of vocabulary, strange sentence structure,
and the use of jargon [16]. Thus, a large body of work around so-
called ‘enhanced compiler error messages’ has emerged [8]. Differ-
ent approaches to message wording have been reported by various
authors, including Barik [3], Becker [9], Denny [13], Kohn [22],
Pettit [29], Prather [31], and Karkare [2]. However, although some
studies have shown positive effects of rewording messages for
novices [15? ], in general the evidence for the effectiveness of en-
hanced compiler error messages is not overwhelming. One of the
limitations of prior work in this area is the manual effort that is re-
quired to generate message rewordings and a lack of clear guidance
for addressing core issues such as readability [16].

Artificial intelligence and machine learning approaches have
been used for finding and repairing errors in programs [1, 18, 19] but
only very fundamental approaches have been applied to researching
PEMs [10]. To our knowledge, no prior work has explored the use
of large language models for improving PEMs.

2.2 Large Language Models
Large Language Models (LLMs), particularly pre-trained trans-
former models, have rapidly become the core technologies of nat-
ural language processing [24]. One such model is OpenAI GPT-3
(third-generation Generative Pre-trained Transformer) [11]. GPT-3
can translate between natural languages, compose poetry in the
style of human poets, generate convincing essays, and more. GPT-3
also powers several other tools such as OpenAI Codex which is
essentially a GPT-3 model that has also been fine-tuned with more
than 50 million repositories representing the majority of Python
code available on GitHub totalling 159GB of source code [12].
Codex is available via the OpenAI API (beta.openai.com) and also
powers tools such as GitHub Copilot (copilot.github.com).

Given the recent emergence of these models, little is yet known
about the impact they are likely to have on the computing education
landscape. In this context, the few evaluations conducted to date
have focused on the accuracy of such models for solving typical

introductory programming problems and on the potential for the
models to generate learning resources. Early work by Finnie-Ansley
et al. assessed the accuracy of Codex by presenting it with typical
CS1-type problems, and comparing its performance against that
of students. They found that it outperformed most students, and
was capable of generating a variety of correct solutions to any
given problem [17]. Sarsa et al. investigated the content generation
capabilities of Codex, by providing input examples as prompts
and using it to generate novel programming problems and code
explanations [33]. They found that most of the problems generated
by Codex were novel and sensible, and that the generated code
explanations were generally correct and thorough.

Given their capability for generating output of human-like qual-
ity from contextual inputs, such as code explanations from code,
there is potential in applying large language models to the problem
of enhancing PEMs.

3 METHODOLOGY
3.1 Error Messages and Programs
For the present study, we collected Python error messages that had
been reported as the most unreadable in [16] and [7]. These error
messages were as follows:

(1) can’t assign to function call
(2) invalid token
(3) illegal target for annotation
(4) unindent does no match any outer indentation level
(5) positional argument follows keyword argument
(6) unexpected EOF while parsing
(7) EOL while scanning string literal
(8) EOF while scanning triple-quoted string literal
(9) (unicodeerror) ‘unicodeescape’ codec can’t decode bytes
To control whether the complexity of the program that results in

a given error message affects the ability of large language models
to create useful explanations of the message, we constructed three
example programs that generated each error message. The first
program was very simple, often only a few lines long. The second
incorporated the usage of strings and functions. The third included
the use of libraries (e.g., the PyGame game library, pandas, scikit-
learn) and was more complex. To create the same error messages
as in the works by [16] and [7], we used Python version 3.6.

3.2 Generating Programming Error Messages
Programming error messages were generated using the Codex
model that was most recent and performant at the time of analysis,
which was the code-davinci-002 -model. As the utility of large
language models depends on the used prompts (see e.g., [26]), it is
important to do “prompt engineering” where the performance of
different types of prompts is evaluated [26]. We evaluated a num-
ber of prompts to identify a version that seemed to provide useful
explanations. We tried five different prompt messages:

1. Plain English explanation of why does running the above
code cause an error and how to fix the problem

2. Plain English explanation of why running the above code
causes the above error in the output and instructions on how
to fix the problem

https://beta.openai.com/
https://copilot.github.com/


Using Large Language Models to Enhance Programming Error Messages SIGCSE ’23, March 15-18, 2023, Toronto, CA

3. Explanation of why running the above code causes the above
error and instructions on how to fix the problem

4. Why does the code result in an error message? How can the
code be fixed?

5. Why does the above code cause the above error message in
the output? How can the code be fixed?

We generated explanations with all five prompts and checked
which version led to the fewest empty responses from Codex. The
number of empty responses was 4, 6, 7, 16 and 27 out of 81 generated
explanations respectively for the prompts 1 to 5 above. We chose
the first for the analysis as it generated the fewest empty responses.
The structure of the prompt given to the large language model can
be seen in the Codex Examples provided later in this article.

For each error message (9 error messages) and each program
leading to an error message (3 programs), we generated three code
explanations, one with Codex temperature parameter set to 0, and
two with temperature set to 0.7. We chose these values as 0 is the
minimum for the parameter and leads to least randomness, i.e. most
deterministic outputs. The value of 0.7 is the default value for the
parameter and leads tomore random (or “creative”) responses, and is
less deterministic, which is also whywe generated two explanations
for the value of 0.7. This led to a total of 9 × 3 × 3 = 81 unique
combinations of programming error message, program category,
and temperature value, which we subsequently evaluated.

3.3 Analysis
We qualitatively analyzed the LLM-produced PEMs. The evaluation
was performed by two researchers, both of whom have experience
from teaching introductory programming. For the evaluation, we
considered the following aspects of the generated PEMs.

(1) Comprehensible: was the generated content intelligible (i.e.
proper English, not nonsensical)

(2) Unnecessary content: did the generated explanation contain
unnecessary content (e.g., repeating content, comprehensible
but irrelevant content)

(3) Has explanation: did the content produced by the LLM con-
tain an explanation of the programming error message

(4) Explanation correct: did the content produced by the LLM
contain a correct explanation of the programming error mes-
sage

(5) Has fix: did the generated explanation contain actions or
steps that one should take to fix the error

(6) Fix correct: did the content produced by the LLM contain
correct actions or steps that one should take to fix the error

(7) Improvement over the original: did the explanation provide
added value (from a novice programmer standpoint) when
compared to the original programming error message

The researchers first had a brief discussion to ensure a shared
understanding of the above aspects and jointly evaluated three
examples. After the discussion and initial joint evaluation, they
separately analyzed the full set of generated explanations. For each
aspect, the researchers chose either “yes” or “no”. For evaluation, the
researchers also had access to the original error message as well as
the program that produced the error message, and considered also
these when evaluating the LLM generated explanations. To examine
the validity of the approach, we calculated inter-rater reliability

between the researchers using Cohen’s kappa. The kappa value
was 0.83 over all the analyzed aspects, indicating almost perfect
agreement [23].

To answer both of our research questions, we report the percent-
age of “yes” answers for the questions outlined above separately
for each different programming error message and separately for
each combination of program category and temperature value. The
proportion of “yes” answers is calculated out of the full set of 162
data points: 2 raters, each with 81 distinct ratings for the unique
combinations of programming error message (n = 9), program (n =
3), and Codex output (n = 3).

4 RESULTS
Table 1 shows the results of the analysis separately for each error
message. Each cell of the table presents the percentage of “yes”
answers to the evaluation question (see Section 3.3 for the questions)
for each of the nine error messages. The cells in the bottom row
of the table show the percentage of “yes” answers across all error
messages for the evaluation question indicated by the column.

In general, most error message explanations created by Codex
were comprehensible (percentage of “yes” ranging from 67% to
100%). A few of the created explanations contained unnecessary
content such as repeated sentences, extra question marks, etc – the
percentage ranging from 11% for “unexpected EOF while parsing”
to 56% for “EOF while scanning triple-quoted string literal” and
“(unicodeerror) ‘unicodeescape’ codec can’t decode bytes”.

In most cases, Codex successfully created an explanation of
the error message (67% to 100% of the time depending on error
message), although there were considerable differences between
error messages on whether the explanation was correct. The range
of correct explanations ranged from 11% for “unexpected EOF while
parsing” to 83% for “can’t assign to function call”.

Regarding Codex’s ability to create actionable fixes based on the
faulty source code and the programming error message, we found
that in the majority of cases, Codex provided a fix in the generated
explanation (44% to 89% of cases). However, the fix was correct
only 33% of the time, ranging from 17% of the time for “EOL while
scanning string literal” to 56% for “(unicodeerror) ‘unicodeescape’
codec can’t decode bytes”.

Altogether, the evaluators considered that the Codex-created
content, i.e. the explanation of the error message and the proposed
fix, were an improvement over the original error message in slightly
over half of the cases (54%). There were some differences between
different error messages: the content was an improvement only 22%
of the time for the “unexpected EOF while parsing” error message,
while it was considered an improvement in 78% of the cases for
“can’t assign to function call” and “invalid token”.

Table 2 shows the results of the analysis separately for different
combinations of program category and temperature value. From
the table, it is evident that for the task of explaining PEMs and
creating suggestions for fixes to the source code that produced
those errors, using a temperature value of 0 resulted in considerably
better outputs, which holds for all three program categories. For
example, the output was considered an improvement in over 70%
of the cases with a temperature value of 0, while only up to 50% of
the cases with a temperature value of 0.7.



SIGCSE ’23, March 15-18, 2023, Toronto, CA Leinonen, Hellas, Sarsa, Reeves, Denny, Prather, and Becker

RQ1 RQ2
Error message Comprehensible Unnecessary content Has explanation Explanation correct Improvement Has fix Fix correct

can’t assign to function call 100% 17% 94% 83% 78% 72% 28%
invalid token 100% 39% 89% 50% 78% 83% 44%
illegal target for annotation 67% 22% 67% 33% 33% 50% 28%
unindent does not match any outer indentation level 100% 39% 100% 56% 56% 67% 28%
positional argument follows keyword argument 89% 22% 89% 61% 56% 78% 39%
unexpected EOF while parsing 67% 11% 67% 11% 22% 44% 22%
EOL while scanning string literal 89% 28% 89% 22% 50% 67% 17%
EOF while scanning triple-quoted string literal 89% 56% 78% 44% 44% 89% 33%
(unicodeerror) ‘unicodeescape’ codec can’t decode bytes 89% 56% 83% 72% 67% 78% 56%

Average over all error messages 88% 32% 84% 48% 54% 70% 33%

Table 1: Error message analysis for each research question. The cells show the percentage of “yes” answers out of all (“yes” and
“no”) answers for the analysis.

RQ1 RQ2
Program category Temperature Comprehensible Unnecessary content Has explanation Explanation correct Improvement Has fix Fix correct

Simple 0.0 100% 6% 100% 67% 72% 78% 44%
Function with strings 0.0 100% 22% 100% 56% 72% 78% 33%
Library 0.0 100% 28% 100% 78% 78% 72% 44%

Simple 0.7 83% 31% 78% 47% 42% 64% 31%
Function with strings 0.7 89% 42% 86% 36% 39% 75% 25%
Library 0.7 72% 44% 64% 33% 50% 61% 31%

Table 2: Effect of temperature and program category on Codex performance in the task.

Regarding differences between program categories, we can ob-
serve that Codex seems to perform slightly worsewith the programs
in the “function with strings” category. However, the variations
between program categories are not as noticeable as the differences
between different temperature values or different error messages.

5 DISCUSSION
5.1 Are Error Message Explanations Useful?
Our results suggest that using large language models to explain
programming error messages (PEMs) is feasible and shows promise.
Overall, the explanation was considered an improvement over the
original programming error message in over half of the cases. If we
only consider the results from using temperature value 0, which
were overall better, over 70% of the Codex outputs were considered
an improvement over the original programming error message.

The results are more sobering when it comes to using large
language models to generate correct fixes. Although 70% included
a fix, when a fix was included it was correct only under half of the
time (47%). While the fixes created with the temperature value of
0 were better on average compared to those created with a value
of 0.7, they were still correct in only around half of the cases –
42%, 56%, and 61% of the cases for functions with strings, simple
programs, and library related programs respectively.

We propose that the generated content could be useful to stu-
dents if it were delivered so that it is clear that the content is
AI-generated and might not be correct. And even with this initial
exploratory setup, we found some outputs (two examples seen in
Codex Example 1 and Codex Example 2) that we consider good
enough to be shown to students without modifications.

Codex Example 1 (input in black, output in red)

""" Code
def check_password(password, input):

return password == input
input = "hunter2"
if check_password("s3cr37", input):
""" Output

File "main.py", line 5

^
SyntaxError: unexpected EOF while parsing
""" Plain English explanation of why does running

the above code cause an error and how to fix the
problem

↩→

↩→

The error is caused because the block of code is

expecting another line of code after the colon.↩→

To fix the issue, I would add another line of code

after the colon.↩→

5.2 Common Pitfalls and Ways Around Them
Two examples of outputs where both the explanation and sug-

gested fix generated by Codex were incorrect are shown in Codex
Examples 3 and 4. Comparing these incorrect outputs with the
correct outputs in Examples 1 and 2, we observe that the messages
seem similarly confident in their tone, which could potentially mis-
lead students. In both of the examples where the output is incorrect,
Codex suggests that the issue is related to indentation. As novices
often struggle with indentation [22, 25], these incorrect suggestions



Using Large Language Models to Enhance Programming Error Messages SIGCSE ’23, March 15-18, 2023, Toronto, CA

Codex Example 2 (input in black, output in red)

""" Code
users_dir_path = "C:\Users"
print("Users directory is", users_dir_path)
""" Output

File "main.py", line 1
users_dir_path = "C:\Users"

^
SyntaxError: (unicode error) `unicodeescape' codec

can't decode bytes in position 2-3: truncated
\UXXXXXXXX escape

↩→

↩→

""" Plain English explanation of why does running
the above code cause an error and how to fix the
problem

↩→

↩→

The error is caused by the backslash character in

the string.↩→

The backslash character is used to escape characters
that would otherwise have a special meaning,
such as newline, backslash itself, or the quote
character.

↩→

↩→

↩→

Since the backslash is used for escaping, if you want

to use it in your string, you need to escape it.↩→

You can do that by using a double backslash:

Codex Example 3 (input in black, output in red)

""" Code
import pygame

display = pygame.display.set_mode((640, 400))
pygame.display.set_caption("Awesome game!")

def main():
while True:

""" Output
File "main.py", line 8

^
SyntaxError: unexpected EOF while parsing
""" Plain English explanation of why does running

the above code cause an error and how to fix the
problem

↩→

↩→

# The above code is not indented enough to be able to

be run by Python.↩→

# Add more spaces or tabs to the start of each line

of code to be able to run it.↩→

could exacerbate this by potentially misleading students and even
introduce misconceptions related to correct indentation.

In general, we observed a few common pitfalls that Codex seemed
to often struggle with: (1) source code clearly missing a part of
the content (resulting in “unexpected EOF while parsing”, see e.g.,
Codex Example 3), (2) incorrectly capitalized control statements
(resulting in “illegal target for annotation”, see e.g., Codex Example
4), and (3) missing quotation marks (resulting in either “EOL while

Codex Example 4 (input in black, output in red)

""" Code
def check_password(password, input):

If (input == "s3cr37"): print("You are in!")
Else: print("Wrong password!")

input = "hunter2"
check_password("s3cr37", input)
""" Output

File "main.py", line 2
If (input == "s3cr37"): print("You are in!")
^

SyntaxError: illegal target for annotation
""" Plain English explanation of why does running

the above code cause an error and how to fix the
problem

↩→

↩→

The error is caused by the fact that the code is not
indented properly. The code should be indented
by 4 spaces.

↩→

↩→

scanning string literal” or “EOF while scanning triple-quoted string
literal”).

For the first case, Codex would often suggest to fix the indenta-
tion of the program, even though the problem was that the imple-
mentation was far from complete (as in Codex Example 3). Similar
suggestions for fixing the indentation were observed for the sec-
ond case as well, even though the problem is in the capitalization.
This can be seen in Codex Example 4, where the issue is that the
if-statement is capitalized, but the message claims the issue is with
indentation. For the third case, Codex was often unable to correctly
identify whether the quotation mark was missing from the begin-
ning or the end of the string, and sometimes suggested that the
issue is related to parentheses instead of missing quotation marks.
Indeed, the program category “function with strings” had the lowest
scores overall (see Table 2).

While it was relatively rare, we did observe some outputs that
were not just incorrect, but even contradictory and confusing. In
one case, Codex seems to have focused too much on the “Plain
English” portion of the input and started generating irrelevant
content related to “looking for a plain English explanation”. To
add to the confusion, the generated output actually does include a
correct explanation of the problem – “You need to end your string
with three single quotes at the end of your string to make it work.”,
but the output also states that “this is not a correct explanation”.

As there were common pitfalls and clear differences between
explanation quality, we see one stream of future work in using
a two-tiered approach for creating explanations. Codex could be
relied upon in cases where it is known that it likely performs well,
while in other cases other means could be exercised. One possibil-
ity is using LLMs to pre-generate explanations of common error
messages that the instructor could validate (essentially, a “human-
in-the-loop” approach). Another possibility would be the use of
learnersourcing, where students could ask for help from their peers;
classic approaches such as discussion forums would also work, al-
though the response times would be lower when compared to the
near-instantaneous feedback from Codex.



SIGCSE ’23, March 15-18, 2023, Toronto, CA Leinonen, Hellas, Sarsa, Reeves, Denny, Prather, and Becker

5.3 Explanations and Context
When considering the usefulness of Codex-generated explanations,
they need to be interpreted and evaluated in context. First, the
original error messages might be more useful for more experienced
students who have learned to interpret them. The importance of
context was present also in some of the disagreements of the two
researchers who independently evaluated the error messages; for
example, one of the researchers at times considered the error mes-
sage as an improvement if it pointed the students to the correct
direction, even if the explanation by itself would be faulty.

The utility of these explanations also depends on whether stu-
dents understand the implications of the suggestions. Prior research
into LLMs has shown that when they are used to facilitate the cre-
ation of source code, they may lead students down debugging rabbit
holes [35] or even introduce security flaws [28]. We also see the
potential for other types of LLM problems. For example, what if
the problem is not with the source code, but an issue with the user
environment – here, a student could ask for help to fix an issue,
convincing the LLM that an issue exists, and going down a rabbit
hole when looking for a solution [35].

Despite the shortcomings, we see the potential of using LLMs as
a scaffold when learning to program and when learning to interpret
error messages. However, as with any instructional scaffolding, the
scaffolding should be dismantled at some point [20], and students
must eventually learn to understand the original error messages.

5.4 Limitations
There are limitations to our study, which we outline here. Firstly,
we used Python 3.6 in the analysis similar to prior work [16]. On
one hand, this allowed us to focus on error messages from the
literature that had been found to be confusing to students. On the
other hand, we acknowledge that newer versions of Python have
included improvements to some of the error messages we analyzed.
For example, some of the code snippets we used that resulted in
an “invalid token” error would have resulted into a “SyntaxError:
leading zeros in decimal integer literals are not permitted; use an 0o
prefix for octal integers” with newer Python versions. We consider
the latter to be easier to understand for novice programmers.

Regarding the code snippets used in the analysis, they were
created by the authors and were not student code. It is possible that
the performance of Codex in explaining error messages for student
code would be different. In our future work, we are interested in
studying the error message explanations with student programs
and with student evaluators. In addition, most of the source codes
were relatively short. The performance of large language models
in explaining error messages might be affected by the length or the
complexity of source code, which future work should examine in
greater detail. Similarly, our code snippets only included singular
errors – future work could analyze how well large language models
can explain error messages when the source code that leads to those
messages contains multiple issues.

When prompting Codex to generate an explanation of the error
message and a fix to the program, we asked for both the explanation
and the fix with a single prompt (“Plain English explanation of why
does running the above code cause an error and how to fix the
problem”). Performance could have increased had we asked for

these separately. In addition, we did not give any examples of good
error message explanations and fixes to the code in the prompt –
i.e. we relied on “zero shot learning” [26]. Prior work has found
that giving even just a few examples (i.e. “few shot learning”) can
drastically improve the performance of large language models [11].

6 CONCLUSION
We used large language models to try improve programming error
messages (PEMs).We collected Python errormessages that had been
reported as most unreadable in prior work [7, 16] and generated
code examples that produced these error messages. We conducted
prompt engineering using OpenAI Codex to identify prompts that
would produce explanations of the PEMs and actionable fixes that
could be applied to the code examples to fix the error. We evaluated
the explanations and fixes created to examine whether they have
utility in introductory programming classrooms. To summarize, we
answer our research questions as follows.

RQ1: How well can Codex explain different error messages? Over-
all, the explanations created by Codex were quite comprehensible
(88%). Codex produced an output with an explanation to 84% of the
provided codes and error messages, but only about half (57%) of
these explanations were deemed correct (48% of all inputs).

RQ2: What is the quality of the code fix suggestions that Codex
generates? Although 70% of the outputs had a proposed fix, a little
less than half (47%) of those were deemed correct (33% of all inputs).

While the above results are aggregated over different PEMs,
program categories, and Codex temperature values, we found cases
where Codex seems to perform better. For example, we noticed that
the results were better across the board when using the temperature
value of 0. Similarly, we found that there were certain cases where
Codex was more likely to provide faulty explanations and suggest
fixes that are incorrect, and highlighted a potential way around this
by having a two-step system that would look into the error message
and the complexity of the source code before deciding whether to
use LLMs or other more traditional support mechanisms.

The key implications of this work are that programming error
message explanations and suggested fixes generated by LLMs are
not yet ready for production use in introductory programming
classes, as there are risks that students may interpret potentially
faulty LLM outputs as coming from an authority, and end up at-
tempting to fix their programs in ways that do not actually help.
At the same time, our results show that LLMs could be a useful
tool for improving PEMs, although additional effort needs to be
taken both when using LLMs to enhance the error messages and
when coming up with ways to produce high-quality enhancements.
Enhancing programming error messages could help students in
debugging their programs as traditional error messages are often
cryptic and hard to understand for novice programmers [15, 16].

The present results were obtained with the code-davinci-002
model of OpenAI Codex, which was the most recent and performant
Codex model at the time of the study. As LLMs improve over time,
these results create a baseline that future model performance can be
compared to. Future work should look in more depth into prompt
engineering, for example by considering including the problem
statement and perhaps a sample solution into the input, as well
as look into applying and evaluating the enhanced programming
error messages in classroom settings.



Using Large Language Models to Enhance Programming Error Messages SIGCSE ’23, March 15-18, 2023, Toronto, CA

REFERENCES
[1] Toufique Ahmed, Noah Rose Ledesma, and Premkumar Devanbu. 2021. SYNFIX:

Automatically Fixing Syntax Errors using Compiler Diagnostics. arXiv preprint
arXiv:2104.14671 (2021).

[2] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, Sumit Gul-
wani, and A.; et al Ahmed, U.; Kumar, P.; Karkare. 2018. Compilation Er-
ror Repair: For the Student Programs, From the Student Programs. In ICSE-
SEET 2018 : 2018 ACM/IEEE 40th International Conference on Software Engi-
neering : Software Engineering Education and Training : proceedings : 30 May
- 1 June 2018, Gothenburg, Sweden. ACM Press, New York, NY,USA, 78–87.
https://doi.org/10.1145/3183377.3183383

[3] Titus Barik. 2018. Error Messages as Rational Reconstructions. Ph. D. Dissertation.
North Carolina State University, Raleigh. https://repository.lib.ncsu.edu/handle/
1840.20/35439

[4] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson
Murphy-Hill, and Chris Parnin. 2017. Do Developers Read Compiler Error Mes-
sages?. In Proceedings of the 39th International Conference on Software Engineering
(Buenos Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 575–585.
https://doi.org/10.1109/ICSE.2017.59

[5] Brett A. Becker. 2021. What Does Saying That ‘Programming is Hard’ Really Say,
and About Whom? Commun. ACM 64, 8 (jul 2021), 27–29. https://doi.org/10.
1145/3469115

[6] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bou-
vier, Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Programming Error
Message Research. In Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-
WGR ’19). Association for Computing Machinery, New York, NY,USA, 177–210.
https://doi.org/10.1145/3344429.3372508

[7] Brett A. Becker, Paul Denny, James Prather, Raymond Pettit, Robert Nix, and
Catherine Mooney. 2021. Towards Assessing the Readability of Programming
Error Messages. In Australasian Computing Education Conference (Virtual, SA,
Australia) (ACE ’21). Association for Computing Machinery, New York, NY,USA,
181–188. https://doi.org/10.1145/3441636.3442320

[8] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle
Goslin, and Catherine Mooney. 2016. Effective Compiler Error Message Enhance-
ment for Novice Programming Students. Computer Science Education 26, 2-3
(2016), 148–175. https://doi.org/10.1080/08993408.2016.1225464

[9] Brett A. Becker, Kyle Goslin, and GrahamGlanville. 2018. The Effects of Enhanced
Compiler Error Messages on a Syntax Error Debugging Test. In Proceedings of
the 49th ACM Technical Symposium on Computer Science Education (Baltimore,
Maryland, USA) (SIGCSE ’18). Association for Computing Machinery, New York,
NY,USA, 640–645. https://doi.org/10.1145/3159450.3159461

[10] Brett A Becker and Catherine Mooney. 2016. Categorizing Compiler e Error
Messages with Principal Component Analysis. In 12th China-Europe International
Symposium on Software Engineering Education (CEISEE 2016), Shenyang, China,
28-29 May 2016.

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-shot Learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating Large Language Models Trained on Code. arXiv preprint
arXiv:2107.03374 (2021).

[13] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing Syntax
Error Messages Appears Ineffectual. In Proceedings of the 19th Conference on
Innovation and Technology in Computer Science Education (Uppsala, Sweden)
(ITiCSE ’14). Association for Computing Machinery, New York, NY,USA, 273–278.
https://doi.org/10.1145/2591708.2591748

[14] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Understanding the Syntax Barrier for Novices. In Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science Education
(Darmstadt, Germany) (ITiCSE ’11). Association for Computing Machinery, New
York, NY,USA, 208–212. https://doi.org/10.1145/1999747.1999807

[15] Paul Denny, James Prather, and Brett A Becker. 2020. Error Message Readability
and Novice Debugging Performance. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education. 480–486.

[16] Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer,
Zachary C Albrecht, and Garrett B. Powell. 2021. On Designing Programming Er-
ror Messages for Novices: Readability and Its Constituent Factors. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,
Japan) (CHI ’21). Association for Computing Machinery, New York, NY,USA,
Article 55, 15 pages. https://doi.org/10.1145/3411764.3445696

[17] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Australasian Computing Education
Conference. 10–19.

[18] Rahul Gupta, Aditya Kanade, and Shirish Shevade. 2019. Deep Reinforcement
Learning for Syntactic Error Repair in Student Programs. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 930–937.

[19] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. Deepfix:
Fixing common C Language Errors by Deep Learning. In Thirty-First AAAI
conference on artificial intelligence.

[20] Slava Kalyuga. 2009. The Expertise Reversal Effect. In Managing cognitive load
in adaptive multimedia learning. IGI Global, 58–80.

[21] Ioannis Karvelas, Annie Li, and Brett A. Becker. 2020. The Effects of Compilation
Mechanisms and Error Message Presentation on Novice Programmer Behavior. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
(Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery, New
York, NY,USA, 759–765. https://doi.org/10.1145/3328778.3366882

[22] Tobias Kohn. 2019. The Error Behind The Message: Finding the Cause of Error
Messages in Python. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association
for Computing Machinery, New York, NY,USA, 524–530. https://doi.org/10.1145/
3287324.3287381

[23] J Richard Landis and Gary G Koch. 1977. The Measurement of Observer Agree-
ment for Categorical Data. biometrics (1977), 159–174.

[24] Hang Li. 2022. Language Models: Past, Present, and Future. Commun. ACM 65, 7
(jun 2022), 56–63. https://doi.org/10.1145/3490443

[25] David Liu and Andrew Petersen. 2019. Static Analyses in Python Programming
Courses. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. 666–671.

[26] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-
hamNeubig. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of Prompt-
ing Methods in Natural Language Processing. arXiv preprint arXiv:2107.13586
(2021).

[27] StephenMacNeil, Andrew Tran, DanMogil, Seth Bernstein, Erin Ross, and Ziheng
Huang. 2022. Generating Diverse Code Explanations using the GPT-3 Large
Language Model. In Proceedings of the 2022 ACM Conference on International
Computing Education Research-Volume 2. 37–39.

[28] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754–768.

[29] Raymond S. Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler
Error Messages Help Students? Results Inconclusive.. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education (Seattle, Wash-
ington, USA) (SIGCSE ’17). Association for Computing Machinery, New York,
NY,USA, 465–470. https://doi.org/10.1145/3017680.3017768

[30] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and
Maxine Cohen. 2018. Metacognitive Difficulties Faced by Novice programmers
in Automated Assessment Tools. In Proceedings of the 2018 ACM Conference on
International Computing Education Research. 41–50.

[31] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On Novices’ Interaction with
Compiler Error Messages: A Human Factors Approach. In Proceedings of the
2017 ACM Conference on International Computing Education Research (Tacoma,
Washington, USA) (ICER ’17). Association for Computing Machinery, New York,
NY,USA, 74–82. https://doi.org/10.1145/3105726.3106169

[32] Saul Rosen, Robert A. Spurgeon, and Joel K. Donnelly. 1965. PUFFT—The Purdue
University Fast FORTRAN Translator. Commun. ACM 8, 11 (nov 1965), 661–666.
https://doi.org/10.1145/365660.365671

[33] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research V. 1. 27–43.

[34] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. ACM Transactions on Computing Education 13,
4 (2013), 1–40. https://doi.org/10.1145/2534973

[35] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In CHI Conference on Human Factors in Computing Systems
Extended Abstracts. 1–7.

https://doi.org/10.1145/3183377.3183383
https://repository.lib.ncsu.edu/handle/1840.20/35439
https://repository.lib.ncsu.edu/handle/1840.20/35439
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1145/3469115
https://doi.org/10.1145/3469115
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3441636.3442320
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/3159450.3159461
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1145/3328778.3366882
https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1145/3490443
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/365660.365671
https://doi.org/10.1145/2534973

	Abstract
	1 Introduction
	2 Background
	2.1 Programming Error Messages
	2.2 Large Language Models

	3 Methodology
	3.1 Error Messages and Programs
	3.2 Generating Programming Error Messages
	3.3 Analysis

	4 Results
	5 Discussion
	5.1 Are Error Message Explanations Useful?
	5.2 Common Pitfalls and Ways Around Them
	5.3 Explanations and Context
	5.4 Limitations

	6 Conclusion
	References

