
An Effective Approach to Enhancing Compiler Error
Messages

Brett A. Becker
School of Computer Science

University College Dublin
Belfield, Dublin 4, Ireland
brett.becker@ucd.ie

ABSTRACT
One of the many challenges novice programmers face from
the time they write their first program is inadequate com-
piler error messages. These messages report details on er-
rors the programmer has made and are the only feedback
the programmer gets from the compiler. For students they
play a particularly essential role as students often have little
experience to draw upon, leaving compiler error messages as
their primary guidance on error correction. However these
messages are frequently inadequate, presenting a barrier to
progress and are often a source of discouragement. We have
designed and implemented an editor that provides enhanced
compiler error messages and conducted a controlled empir-
ical study with CS1 students learning Java. We find a re-
duced frequency of overall errors and errors per student.
We also identify eight frequent compiler error messages for
which enhancement has a statistically significant effect. Fi-
nally we find a reduced number of repeated errors. These
findings indicate fewer students struggling with compiler er-
ror messages.

Keywords
Java; debugging; errors; syntax errors; error messages; com-
piler errors; feedback; novice; programming; CS1

1. INTRODUCTION
Good compiler error messages provide feedback that is

critical for novices [17]. Unfortunately they are frequently
inadequate and pose a significant barrier to progress [21],
particularly affecting novices more adversely [23]. Error
messages and the difficulties they present to students have
been pervasive themes in teaching beginners to program for
several decades. In 1976, ‘cryptic diagnostics’ was named by
students as one of the primary issues that made program-
ming difficult [25]. Thirty years later Jadud noted that error
messages generated by commercial compilers were often un-
informative and sometimes misleading [14]. Unfortunately
these characteristics are still indicative of the error messages
provided by modern languages today, forty years later; cryp-
tic and uninformative, often terse and misleading.

Although this issue spans many (if not all) languages,
there is evidence that Java error messages are particularly
difficult for novices, and means of learning how to deal with
them more effectively are needed. Ben-Ari noted that Java
error messages are terse and many novices find it difficult to
achieve syntactically correct Java programs [3]. Our experi-
ence is that Java compiler error messages, like those in other

languages, can be a significant barrier to student success, a
view shared by others [7, 8].

It has been shown that the majority of students spend
the majority of their time on a minority of errors and that
students spend more time solving certain kinds of syntax
errors than others [7]. In addition, repeating errors is com-
mon, and the number of repeated errors is an indication of
struggling students. Jadud found that repeated errors were
often the best indicator for how well (or poorly) a student
was progressing [14].

In this paper we report on the effects of a Java editor
called Decaf which enhances javac compiler error messages.
When a student error generates an error message, the of-
fending code and error message are analyzed in an effort to
produce an enhanced error message which provides more us-
able information to the student, in the hope that the error
can be rectified more effectively than with the standard error
message alone. It is hoped that by presenting both the reg-
ular and enhanced errors together, students will learn from
the enhanced error messages and avoid making the same
mistakes in the future. The main research question is: Do
enhanced compiler error messages have a measurable effect
which may help students who are learning to program? In in-
vestigating this we looked at three specific questions: 1. Did
enhanced compiler error messages reduce the overall number
of student errors? 2. Did enhanced compiler error messages
reduce the number of errors per student? 3. What effect
to enhanced compiler error messages have on the number of
repeated errors?

2. RELATED WORK
Several studies have researched enhanced error messages.

A recent paper [8] describes six, and here we present another
six. For a more in-depth discussion of these and more, see
[2].

Hristova et al. [11] introduced Expresso, a pre-compiler
which scans Java programs for 20 common errors. These
errors were identified through a survey of their students and
faculty at several institutions including their own. Expresso
provides users with explanatory messages provided the error
in question is one of those identified. The authors describe
their system as an interactive tool that would do a better
job generating error messages than existing compilers and
also provide suggestions on how to fix the code. However an
assessment of Expresso was left to future work.

Thompson and Rigby [19] introduced an Eclipse plug-in
called Gild, specifically for novice Java programmers. Gild
includes a feature which provides compiler error message



explanations and possible causes in plain English. Messages
for which the authors felt a longer explanation was required
were explained in a wiki. Several online resources were used
to generate a list of 51 errors for which Gild could provide
enhanced compiler error messages. At the end of the study,
10 of these errors accounted for 68% of all errors. The study
had many objectives, with the effects of enhanced compiler
error messages making up three of six research questions. In
addition, it was an exploratory work with a small number of
students – less than 10 for the quantitative results, depend-
ing on the sub-study in question. The results were not con-
clusive as to whether or not students became faster at fixing
their errors over the course of the study (one semester), or if
their errors changed over the course of the semester. 57% of
28 students found Gild’s extra error help feature “useful at
least some of the time”. It was concluded that Gild needed
more specific error messages and better coverage of errors
most encountered by students.

Coull [5] introduced a framework for support tools that
addresses both program and problem formulation for novices.
One of the requirements of such tools is to present both
standard compiler error messages and the enhanced mes-
sages concurrently. Only one of three systems categorized
by Coull met this requirement and focused on syntax er-
rors in high-level languages: CAP [20] which was for Pascal,
and often provided exemplar code. Coull also developed
SNOOPIE using the framework, for learning Java program-
ming. Although the scope of SNOOPIE was well beyond
enhancing compiler error messages, one of the primary ob-
jectives of the tool was just that. It was shown that this
support was beneficial to a small group of students, partic-
ularly for non-trivial syntactic errors.

Hartmann et al. [10] developed HelpMeOut, a ‘social rec-
ommender system’ that aids the debugging of error messages
by suggesting solutions that peers have applied in the past.
A limited evaluation was carried out and a longer deploy-
ment deemed necessary to determine just how successful the
system is.

Watson, Li and Godwin [24] developed Bluefix, an online
tool integrated into BlueJ [15] which provides varying lev-
els of elaborate feedback, incorporating crowd-sourced er-
ror fixes. An evaluation was conducted suggesting a 19%
improvement over HelpMeOut and revealing that students
viewed the tool positively.

Many of the studies discussed in this section in addition to
those discussed in [8] focus on addressing the problem with
compiler error messages, but lack empiricism in determining
if they make any difference, particularly to novices. Denny,
Luxton-Reilly and Carpenter [8] implemented an enhanced
feedback system to users of CodeWrite [7], a web-based tool
designed to help students complete Java exercises. This 2014
study was the first recent work on the effect of enhancing
Java compiler error messages with control and intervention
groups. The system was used with students attempting exer-
cises which required them to complete the body of a method
for which the header was provided. Students participated
for a period of two weeks as part of an accelerated summer
course. Students were required to complete 10 lab exercises
using the tool with 83 students submitting at least one. The
study found no significant effect on the number of consec-
utive non-compiling submissions, the total number of non-
compiling submissions, and the number of attempts needed
to resolve the most common kinds of errors.

3. THE TOOL AND METHODS
Decaf analyzes a student’s source code and compiler mes-

sage and presents an enhanced message where possible. A
total of 30 error messages result in enhanced messages, which
are then customized based on analyzing the offending code.
The enhanced message appears alongside the original as rec-
ommended by [6]. If no enhanced error message is possible
the user is presented with a statement indicating the line
number of the first error, and referring the user to the stan-
dard javac output which is in the same window (see Figure
1). Decaf only presents an enhanced version of the first error
message when more than one are present. This is consistent
with other teaching tools such as BlueJ [15] and more re-
cent work [8], but is not always the case, for instance with
Expresso [11]. We do not categorize or group compiler er-
ror messages unlike previous studies [9, 12, 13] as this can
complicate comparison [8].

Figure 1 shows the Decaf error window displaying an en-
hanced compiler error message resulting from incorrectly
calling the length() method of the String class, generating a
cannot find symbol error message.

Figure 1: Decaf error window displaying an enhanced com-
piler error message resulting from incorrectly calling the
length() method of the String class which generated a cannot
find symbol javac error message.

The evaluation study took place at the College of Com-
puting Technology in Dublin, Ireland, in the Semester 1
CS1 module on a BSc in Information Technology program.
Anonymous data was logged for a four week period for two
groups, each with just over 100 students. The control group
received the raw javac compiler error messages and the inter-
vention (enhanced) group received the raw javac messages
alongside an enhanced message of the first, should Decaf
be able to provide one. The groups took place in consec-
utive academic years and substantial effort was put into
making the learning experience and environment similar for
both groups. The same lecturer taught both groups and the
course content, lab work, schedule, and other environmental
and pedagogical factors were kept as similar as possible.

Unlike some previous studies there were no constructs
such as supplied method definitions to be completed by the
students. Students were working largely on their own time
while studying and working on weekly lab exercises based
on: data types, basic mathematics, decision making, logical
and relational operators, loops, arrays, user input and type
casting.



Table 1: Top 10 student errors per compiler error message,
control group.

Compiler Error Message n %
cannot find symbol 4,614 16.0%

‘)’ expected 3,317 11.5%
‘;’ expected 3,076 10.7%

not a statement 2,142 7.4%
illegal start of expression 1,825 6.3%

reached end of file while parsing 1,406 4.9%
illegal start of type 1,316 4.6%
‘else’ without ‘if’ 1,141 4.0%

bad operand types for binary
1,138 3.9%

operator
<identifier> expected 1,091 3.8%

4. RESULTS

4.1 Comparison of control group with other
studies

Before comparing the control and enhanced groups we
present the 10 most frequent compiler error messages from
the control group (who experienced the standard javac error
messages) to facilitate comparison with several other stud-
ies. Table 1 shows these error messages and the number of
times each was generated. These 10 error messages resulted
from 73% of 29,019 student errors.

Figure 2 shows that that the control group aligns well with
the previous work of [4, 9, 12, 14, 22]. The fact that some
studies group or categorize errors does not seem to compli-
cate this type of comparison much, as we are looking at a
frequency-based distribution, not necessarily individual er-
rors. That being said, four of the top five errors are common
to all six studies, subject to minor differences due to using
different Java versions and study-specific groupings such as
some grouping all cannot find symbol errors together and
others reporting cannot find symbol (variable/method/etc.)
separately. The top three errors in all six studies are: can-
not find symbol, ‘)’ expected or ‘bracket expected’, and ‘;’
expected. The fourth is mixed: this and two other studies
share not a statement. The fifth is illegal start of expres-
sion. Overall the frequency distribution of the top 10 errors
(and particularly the top five errors themselves) from this
study align well with those from all five previous studies de-
spite some study-specific methodologies and different Java
versions.

4.2 Did enhanced compiler error messages re-
duce the overall number of student errors?

After filtering out data representing students with less
than an average of 10 compilation events per week a to-
tal of 48, 489 student errors remained, 19, 628 for the en-
hanced group (104 compiler IDs) and 28, 261 for control
(108). These resulted in 74 unique compiler error messages
including all 30 that Decaf enhances. A Wilcoxon signed-
rank test (two-tail) showed a significantly lower number of
student errors per compiler error message for the enhanced
group (Mdn = 18) compared to the control group (Mdn =
34); Z = −4.29, p < 0.001.

The top 15 compiler error messages accounted for 86.3%
of total errors, 17, 144 for the enhanced group and 24, 689

Figure 2: Frequency of the 10 most frequent compiler error
messages from six studies.

Figure 3: Scatter plots showing linear correlation of number
of errors between groups. Each point represents a specific
compiler error message.

for control (102 compiler IDs each). A Wilcoxon signed-
rank test (two-tail) showed a significantly lower number of
student errors per compiler error message for the enhanced
group (Mdn = 627) compared to the control group (Mdn =
1, 135); Z = −3.17, p = 0.002.

Figure 3 shows a strong linear correlation between groups
for all compiler error messages (left) and the 15 most fre-
quent (right). This is somewhat expected; we do not expect
enhancing compiler error messages to profoundly alter the
errors students make other than possibly reducing their fre-
quencies and the related shifts involved. The slope of both
correlations is > +1, as the control group (with more error
messages overall) is on the y-axes.

Figure 4 shows the number of student errors generating
the 15 most frequent compiler error messages for the con-
trol and enhanced groups. All but three (‘else’ without ‘if ’,
illegal start of type, and ‘.class’ expected) are enhanced by
Decaf. There are fewer errors for the enhanced group for all
errors messages except ‘else’ without ‘if ’, for which the en-
hanced group is marginally greater. The smallest difference
occurs with ‘.class’ expected.



Figure 4: Number of errors for the 15 most frequent compiler
error messages.

4.3 Did enhanced compiler error messages re-
duce the number of errors per student?

Table 2 shows the average number of errors per student
and average number of unique compiler error messages per
student for both groups. There was not a significant dif-
ference in (student committed) errors per student between
groups when taking all errors into account, however for the
top 15 compiler error messages (accounting for 86.3% of all
errors) a Mann-Whitney U test (two-tail) showed that the
number of errors per student was less for the enhanced group
(Mdn = 125) compared to the control group (Mdn = 152);
U = 4, 254, p = 0.028.

Table 2: Average number of errors per student and average
number of unique compiler error messages per student.

Group
Average errors

Average unique

per student
error messages
per student

Control 265 20
Enhanced 188 16

Investigating individual errors, nine of these 15 had a sig-
nificant difference between groups, shown in Table 3. Eight
of these nine are enhanced by Decaf. The compiler error
message that is not (‘.class’ expected) had the smallest dif-
ference in number of errors between groups.

4.4 What effect do enhanced compiler error
messages have on the number of repeated
errors?

To investigate this question we examined the 15 most fre-
quent error messages as they make up 86.3% of all errors.
A student is said to have committed a repeated error when

Table 3: The nine of the top 15 compiler error messages
with a significant difference between groups (control, c and
enhanced, e) sorted by median, Mdn.

Compiler Error Message Mdn c, e p
cannot find symbol 35, 26 0.012

not a statement 10, 6 0.003
illegal start of expression 10, 7 0.042

class, interface, or enum expected 6, 3 0.001
<identifier> expected 4, 2 0.038

incompatible types 5, 3 0.005
variable v already defined in

4, 3 0.043
method m

’(’ expected 2, 1 0.023
’.class’ expected 2, 0 0.006

two consecutive compilations result in the same error mes-
sage and originate from a student error on the same line of
code. The control group generated 13,849 repeated errors
while the enhanced group generated 9,752. Figure 5 shows
the number of repeated student errors per compiler error
message for the 15 most frequent error messages.

Figure 5: Number of repeated student errors per compiler
error message for the 15 most frequent compiler error mes-
sages.

A Wilcoxon signed-rank test (two-tail) showed fewer re-
peated student errors per compiler error message for the
enhanced group (Mdn = 416) than for the control group
(Mdn = 742); Z = −2.90, p = 0.004. In addition, a
Shaprio-Wilk test showed that log transformed data was
normal and a paired t-test (two-tail) showed fewer repeated
student errors per compiler error message for the enhanced
group (M = 2.68, SD = 0.35) compared to the control
group (M = 2.87, SD = 0.30); t(14) = 4.73, p < 0.001.

5. DISCUSSION
We have presented evidence that enhanced compiler error

messages reduce the number of errors and number of errors



per student, as well as the number of repeated errors per
compiler error message. This is presented on the foundation
that the control group of this study is comparable to find-
ings from several previous studies, for the same language.
However we must identify some threats to validity.

First, the groups were separated by a year. It is possi-
ble that the enhanced group simply generated fewer error
messages. However as the number of students involved was
over 200 and the total number of errors collected was nearly
50,000 we find this unlikely, particularly as attempts were
made to make all environmental and pedagogical factors as
similar as possible. Students learned the same topics in as
similar a way as possible, experiencing the same lecturer,
material, labs and other controllable factors. Nonetheless
some factors could not be controlled such as scheduling dif-
ferences, room availability and external pressures on stu-
dents from other modules.

A more technical threat to validity is the fact that a new
anonymous compiler ID is issued when Decaf is reinstalled,
perhaps by the same student on the same computer, or by
one student on multiple computers. This creates an issue in
not having a perfect one to one mapping of compiler IDs to
students. It is believed that this did not impact results to a
high degree for three reasons. First, the number of compiler
IDs was not much above the average attendance and the av-
erage number of students submitting lab exercises. Second,
filtering data to remove inactive compiler IDs brought the
number of compiler IDs even closer to the expected numbers
(based on class lists and attendance). Finally and impor-
tantly, it was shown that the control group had a similar
error profile to other studies. The compiler ID threat will
be partially mitigated in future studies with persistent IDs.
Related to this, students were encouraged to only use Decaf.
A student could choose to use another environment, or use
Decaf and another environment, although the lecturer noted
very little evidence of this.

The control group was presented with the standard javac
error messages (which often involve multiple error messages)
making it possible for some students to correct more than
one error at a time. Although [8] reported a similar concern,
we decided not to interfere with the javac errors at all for the
control group. The enhanced group however did only receive
one enhanced compiler error message per compilation. It is
possible that being presented with only one error reduced
confusion for some students, potentially resulting in fewer
errors. Future work will investigate this possibility.

We did not anticipate three of the 15 most frequent error
messages and therefore Decaf does not enhance them: ‘else’
without ‘if ’, illegal start of type, and ‘.class’ expected. This
however did provide an interesting ‘self-contained’ control
case which spanned both groups. As both groups experi-
enced the same raw Java error messages in these cases, it
would be expected that there would be little variation in
their frequencies. Indeed for two of these three error mes-
sages the frequencies were nearly equivalent. Only illegal
start of type showed a relatively considerable difference be-
tween groups. This could be due to environmental circum-
stances, or it could be a knock-on effect, where enhancing
some compiler error messages helps with other (perhaps re-
lated) errors that are not enhanced. See [2] for a discussion
on this, which is also a direction for future work.

In [18] McCall and Kölling analyzed actual student errors
instead of the diagnostic compiler error messages, noting

that analyzing the compiler error messages is imprecise for
two reasons. First, a single error (in code) can produce dif-
ferent compiler error messages, depending on context. Sec-
ond, the same compiler error message can be produced by
entirely different errors, again depending on context. In [1]
Altadmri and Brown overcame this lack of a one-to-one map-
ping by parsing the code for offending errors. In the present
study the source code is captured at the same time as the
error which similarly can overcome this mapping problem
in many cases. For instance see Figure 1, where the com-
piler error message cannot find symbol is matched with the
source code to produce an accurate error message. With-
out the source, it would be difficult to provide an accurate
message as cannot find symbol can occur for a variety of rea-
sons including misspelling an identifier, using an identifier
outside its scope, or calling a constructor with an incorrect
parameter signature [3]. Nonetheless it should be pointed
out that in some cases, matching of the source code and
compiler error message does not result in information which
can be used to create a usable enhanced error message.

Having presented our results and threats to validity, we
do not want to overlook that student surveys revealed a
positive experience with the software and enhanced error
messages. The enhanced group reported that compiler error
messages were less frustrating, and not as much of a barrier
to progress compared to the control group. The enhanced
group also reported (after spending time with other IDEs)
that they found Decaf to make learning to program easier
than the control group and that they would recommend De-
caf to other learners more than the control group.

6. CONCLUSIONS AND FUTURE WORK
Compiler error messages are frequently inadequate and of-

ten a source of discouragement, posing a significant barrier
to novices learning to program. Several studies have inves-
tigated enhancing compiler error messages but few provide
substantial empirical results on their effectiveness. One re-
cent study which did [8] found no effect on the number of
non-compiling submissions, the consecutive number of non-
compiling submissions, and the number of attempts needed
to resolve the three most common kinds of errors.

We designed and implemented an editor providing en-
hanced compiler error messages and conducted a controlled
empirical study with CS1 students learning Java. Compar-
ing the 10 most frequent error messages from the control
group representing 79% of 29,019 student errors, we found
considerable agreement with other studies. Analyzing nearly
50,000 errors from over 200 students, we found a reduced
number of overall errors, errors per student, and repeated
errors per compiler error message, for students experiencing
enhanced compiler error messages. We also identified eight
specific error messages for which enhancement results in a
statistically significant reduction in student errors.

Future work involves investigating repeated error mes-
sages in greater detail, exploring the possibilities of knock-on
effects between enhanced and non-enhanced errors, and ap-
plying the rubric of [16] who provide an empirical process
for analyzing the effectiveness of error messages and a rubric
for understanding the difficulties students have with them.

7. ACKNOWLEDGEMENTS
The author would like to thank Dr. Catherine Mooney,



Dr. Claire McDonnell, Mr. Graham Glanville and Mr. Ri-
cardo Iwashima for their insight and support.

8. REFERENCES
[1] Amjad Altadmri and Neil CC Brown. 37 million

compilations: Investigating novice programming
mistakes in large-scale student data. In Proceedings of
the 46th ACM Technical Symposium on Computer
Science Education, pages 522–527. ACM, 2015.

[2] B. A. Becker. An Exploration of the Effects of
Enhanced Compiler Error Messages for Computer
Programming Novices. Master’s thesis, Dublin
Institute of Technology, 2015.

[3] M. M. Ben-Ari. Compile and runtime errors in java.
www.weizmann.ac.il/sci-tea/benari/software/others/
errors.pdf, 2007. Accessed: 2015-08-23.

[4] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting.
Blackbox: A large scale repository of novice
programmers’ activity. In Proceedings of the 45th
ACM technical symposium on Computer science
education, pages 223–228. ACM, 2014.

[5] N. J. Coull. SNOOPIE: development of a learning
support tool for novice programmers within a
conceptual framework. PhD thesis, University of St
Andrews, 2008.

[6] N. J. Coull and I. M. M. Duncan. Emergent
requirements for supporting introductory
programming. Innovation in Teaching and Learning in
Information and Computer Sciences, 10(1):78–85,
2011.

[7] P. Denny, A. Luxton-Reilly, E. Tempero, and
J. Hendrickx. Codewrite: supporting student-driven
practice of java. In Proceedings of the 42nd ACM
technical symposium on Computer science education,
pages 471–476. ACM, 2011.

[8] P. Denny, A.a Luxton-Reilly, and D. Carpenter.
Enhancing syntax error messages appears ineffectual.
In Proceedings of the 2014 conference on Innovation &
technology in computer science education, pages
273–278. ACM, 2014.

[9] T. Dy and M. M. Rodrigo. A detector for non-literal
java errors. In Proceedings of the 10th Koli Calling
International Conference on Computing Education
Research, pages 118–122. ACM, 2010.

[10] B. Hartmann, D. MacDougall, J. Brandt, and S. R.
Klemmer. What would other programmers do:
suggesting solutions to error messages. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1019–1028. ACM, 2010.

[11] M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting java programming errors for
introductory computer science students. ACM
SIGCSE Bulletin, 35(1):153–156, 2003.

[12] J. Jackson, M. Cobb, and C. Carver. Identifying top
java errors for novice programmers. In Frontiers in
Education, 2005. FIE’05. Proceedings 35th Annual
Conference, pages T4C–T4C. IEEE, 2005.

[13] M. C. Jadud. A first look at novice compilation
behaviour using bluej. Computer Science Education,
15(1):25–40, 2005.

[14] M. C. Jadud. An exploration of novice compilation
behaviour in BlueJ. PhD thesis, University of Kent,

2006.

[15] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg.
The bluej system and its pedagogy. Computer Science
Education, 13(4):249–268, 2003.

[16] G. Marceau, K. Fisler, and S. Krishnamurthi.
Measuring the effectiveness of error messages designed
for novice programmers. In Proceedings of the 42nd
ACM technical symposium on Computer science
education, pages 499–504. ACM, 2011.

[17] G. Marceau, K. Fisler, and S. Krishnamurthi. Mind
your language: on novices’ interactions with error
messages. In Proceedings of the 10th SIGPLAN
symposium on New ideas, new paradigms, and
reflections on programming and software, pages 3–18.
ACM, 2011.

[18] Davin McCall and Michael Kolling. Meaningful
categorisation of novice programmer errors. In
Frontiers in Education Conference (FIE), 2014 IEEE,
pages 1–8. IEEE, 2014.

[19] P. C. Rigby and S. Thompson. Study of novice
programmers using eclipse and gild. In Proceedings of
the 2005 OOPSLA workshop on Eclipse technology
eXchange, pages 105–109. ACM, 2005.

[20] T. Schorsch. Cap: an automated self-assessment tool
to check pascal programs for syntax, logic and style
errors. ACM SIGCSE Bulletin, 27(1):168–172, 1995.

[21] A. Stefik and S. Siebert. An empirical investigation
into programming language syntax. ACM Transactions
on Computing Education (TOCE), 13(4):19, 2013.

[22] E. S. Tabanao, M. M. Rodrigo, and M. C. Jadud.
Predicting at-risk novice java programmers through
the analysis of online protocols. In Proceedings of the
seventh international workshop on Computing
education research, pages 85–92. ACM, 2011.

[23] V. J. Traver. On compiler error messages: what they
say and what they mean. Advances in
Human-Computer Interaction, 2010, 2010.

[24] Christopher Watson, FrederickW.B. Li, and JamieL.
Godwin. Bluefix: Using crowd-sourced feedback to
support programming students in error diagnosis and
repair. In Elvira Popescu, Qing Li, Ralf Klamma,
Howard Leung, and Marcus Specht, editors, Advances
in Web-Based Learning - ICWL 2012, volume 7558 of
Lecture Notes in Computer Science, pages 228–239.
Springer Berlin Heidelberg, 2012.

[25] R. L. Wexelblat. Maxims for malfeasant designers, or
how to design languages to make programming as
difficult as possible. In Proceedings of the 2nd
international conference on Software engineering,
pages 331–336. IEEE Computer Society Press, 1976.


