
BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 1

High-Level Data Partitioning for Parallel Computing
on Heterogeneous Hierarchical HPC Platforms

Brett A. Becker

School of Computer Science and Informatics
University College Dublin
Belfield, Dublin 4, Ireland

brett.becker@ucd.ie

Technical Report UCD-CSI-2011-10

Abstract—The current state and foreseeable future of high
performance scientific computing (HPC) can be described in
three words: heterogeneous, parallel and distributed. These three
simple words have a great impact on the architecture and design
of HPC platforms and the creation and execution of efficient
algorithms and programs designed to run on them. As a result
of the inherent heterogeneity, parallelism and distribution which
promises to continue to pervade scientific computing in the
coming years, the issue of data distribution and therefore data
partitioning is unavoidable.

This data distribution and partitioning is due to the inherent
parallelism of almost all scientific computing platforms. Cluster
computing has become all but ubiquitous with the development of
clusters of clusters and grids becoming increasingly popular. Even
at a lower level, high performance symmetric multiprocessor
(SMP) machines, General Purpose Graphical Processing Unit
(GPGPU) computing, and multiprocessor parallel machines play
an important role. At a very low level, multicore technology is
now widespread, increasing in heterogeneity, and promises to be
omnipresent in the near future. The prospect of prevalent many-
core architectures will inevitably bring yet more heterogeneity.

Scientific computing is undergoing a paradigm shift like none
before. Only a decade ago most high performance scientific
architectures were homogeneous in design and heterogeneity
was seen as a difficult and somewhat limiting feature of some
architectures. However this past decade has seen the rapid
development of architectures designed not only to exploit het-
erogeneity but architectures designed to be heterogeneous. Grid
and massively distributed computing has led the way on this
front. The current shift is moving from this to architectures
that are not heterogeneous by definition, but heterogeneous
by necessity. Cloud and exascale computing architectures and
platforms are not designed to be heterogeneous as much as they
are heterogeneous by definition. Indeed such architectures cannot
be homogeneous on any large (and useful) scale. In fact more
and more researchers see heterogeneity as the natural state of
computing.

Further to hardware advances, scientific problems have be-
come so large that the use of more than one of any of the above
platforms in parallel has become necessary, if not unavoidable.
Problems such as climatology and projects including the Large
Hadron Collider necessitate the use of extreme-scale parallel
platforms, often encompassing more than one geographically
central supercomputer or cluster. Even at the core level large

amounts of information must be shared efficiently.
One of the greatest difficulties in solving problems on such

architectures is the distribution of data between the different
components in a way that optimizes runtime. There have been
numerous algorithms developed to do so over the years. Most
seek to optimize runtime by reducing the total volume of
communication between processing entities. Much research has
been conducted to do so between distinct processors or nodes,
less so between distributed clusters.

This report presents new data partitioning algorithms for
matrix and linear algebra operations. These algorithms would in
fact work with little or no modification for any application with
similar communication patterns. In practice these partitionings
distribute data between a small number of computing entities,
each of which can have great computational power themselves,
and an even greater aggregate power. These partitionings may
also be deployed in a hierarchical manner, which allows the
flexibility to be employed in a great range of problem domains
and computational platforms. These partitionings, in hybrid
form, working together with more traditional partitionings,
minimize the total volume of communication between entities
in a manner proven to be optimal. This is done regardless of
the power ratio that exists between the entities, thus minimizing
execution time. There is also no restriction on the algorithms
or methods employed on the clusters themselves locally, thus
maximizing flexibility.

Finally, most heterogeneous algorithms and partitionings are
designed by modifying existing homogeneous ones. With this in
mind the ultimate contribution of this report is to demonstrate
that non-traditional and perhaps unintuitive algorithms and
partitionings designed with heterogeneity in mind from the start
can result in better, and in many cases optimal, algorithms and
partitionings for heterogeneous platforms. The importance of this
given the current outlook for, and trends in, the future of high
performance scientific computing is obvious.

Index Terms—Parallel Computing, Heterogeneous Computing,
High Performance Computing, Scientific Computing, Data Parti-
tioning, Minimising Communication, Matrix-Matrix Multiplica-
tion.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 2

I. INTRODUCTION

TWO general areas have provided the motivation for this
work—those which are fundamental to this research,

and the current state-of-the-art of high performance scientific
computing. Areas which fall into the fundamental area include:
• What happens when we want to solve a well-established

homogeneous problem on heterogeneous platforms?
• How can the performance of these problems be im-

proved?
• Why have these problems, running on heterogeneous

platforms, been largely ignored by research groups?
• Where is scientific computing headed in the future?
Platforms and architectures which are central to the state-

of-the-art and future of scientific computing include:
• Super Computing
• Grid Computing
• Cloud Computing
• Cluster Computing
• GPGPU Computing
• Multicore Computing

A. Fundamentals

This work started with a simple question. Take two hetero-
geneous processing elements—how can they work together
to best solve a specific problem? This question immediately
raised many more. What happens if we add another element
to make three? What about four? Is there something specific
about the problems we want to solve that can be exploited
to improve performance? How will the data partitioning and
distribution impact the communication and execution times?
How will the communication network affect the communica-
tion times? How will this affect execution times?

Regardless of the answers to these questions, two things
are certain. It is desired for these elements to balance the
computational load between themselves optimally, and to
communicate data necessary for computations optimally. Un-
fortunately optimality is not always possible. These two tasks
often turn out to be surprisingly difficult on heterogeneous
platforms. Indeed solutions to problems that prove to be
optimal on heterogeneous platforms are rare. Often some of
the most simple tasks on homogeneous platforms turn out
to be NP-Complete when attempted on heterogeneous ones
[1]. Sometimes approximation algorithms are found, often
heuristics and problem restrictions are resorted to, and in
some cases not even theoretical results exist. In the latter case
researchers have deemed it necessary to resort to experimental
approaches for reproducibility and comparison studies. Tools
to facilitate such have already been developed [2].

To answer our questions we choose as a testbed the problem
of matrix matrix multiplication (MMM). Matrices are proba-
bly the most widely used mathematical objects in scientific
computing and their multiplication (or problems reducible
to MMM) appear very frequently in all facets of scientific
computing [3]. Indeed, MMM is the prototype of tightly-
coupled kernels with a high spatial locality that need to
be implemented efficiently on distributed and heterogeneous

platforms [4]. Moreover most data partitioning studies mainly
deal with matrix partitioning.

Why would we want to extend MMM to heterogeneous plat-
forms? As stated in [4], the future of computing platforms is
best described by the keywords distributed and heterogeneous.

Our fundamental motivation stems from two sources. First,
there exist many general heterogeneous MMM algorithms
which work well for several, dozens, hundreds, or even
thousands of nodes, but all currently known algorithms result
in simple, perhaps naı̈ve partitionings when applied to the
architecture of a small number of interconnected hetero-
geneous computing entities (two, three, etc.). Examples of
these methods are explored in [4]–[8]. As stated earlier we
intentionally set out to investigate the particular case of a small
number of computing entities to see what is happening in what
is sometimes perceived to be a “degenerate” case. We point
out that this case is not degenerate. For example, architectures
from multicore chips up to grid platforms all regularly deal
with small numbers of cores or clusters respectively, and
algorithms running on such platforms need to be as efficient
as possible. Despite its existence for at least 30 years, parallel
MMM research has almost completely ignored this area. Early
work is presented in [9], [10], and some early application
results in [11]. A full thesis presenting the culmination of these
works has recently been completed [12].

Second, we at the Heterogeneous Computing Laboratory1

are keenly aware of the parallel, distributed and especially
the heterogeneous nature of computing platforms which are
omnipresent in scientific computing, and that most parallel and
distributed algorithms in existence today are designed for, and
only work efficiently on homogeneous platforms. After dis-
cussing the aforementioned load balancing and communication
issues, we will survey modern scientific computing platforms,
and where parallelism, distribution and heterogeneity impact
them.

1) Load Balancing: The issue of load balancing is well
studied and well understood, but not without its challenges.
For a detailed study see [13]. Neglecting the obvious such
as the nature of the problem itself, failures and fluctuating
capability due to other outside influences or factors, the issue
can be reduced to a knowledge of the problem and the
computing elements themselves. Suppose there is an amount
of work W to do. If element A is capable of doing a work
x in time t1 and element B is capable of doing a work y
in time t2, the problem can be statically partitioned quite
easily. We know that A works at a speed s1 = x

t1
and B

works at a speed s2 = y
t2

. If we normalize the speeds so that
s1 +s2 = 1, element A is to receive an amount of work equal
to W × s1 and element B is to receive an amount of work
equal to W × s2. Theoretically this would result in A and B
finishing their work partitions in the same time, thus being
optimal from a load balancing point of view.

For homogeneous computing elements such a problem
scales well. In fact homogeneous systems are a standard
platform for many supercomputers today (See Section I-B).
Current supercomputers utilize thousands of homogeneous

1hcl.ucd.ie

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 3

elements (normally nodes or processors) working in parallel.
For example, at the time of writing the 11th fastest computer
on Earth is “Kraken”, a Cray XT5-HE System Model, with
16,488 AMD x86 64 Opteron Six Core processors running
at 2,600 MHz (a total of 98,928 cores) at the National
Institute for Computational Sciences/University of Tennessee
in Tennessee, USA.2 Kraken is capable of 1,028,851 GFlops.
For reference the laptop I am writing on now is an Intel
Core Duo T5500 running at 1.66Ghz with 2GB memory,
and has a peak performance of around 1Gflop, depending
on the benchmark. An embarrassingly parallel problem—that
is a problem that can be cut into any number of pieces as
small as one wants with little or no communication between
processes—could be theoretically balance load by partitioning
the problem into 98,928 partitions and have each core solve
one of the partitions. This would theoretically solve the whole
problem in about one millionth of the time it would take my
laptop. This is of course neglecting an multitude of factors
such as data distribution and re-collection times, architectural
differences, and vast memory and storage issues.

2) Communication: It is the communication aspects of data
partitioning and distribution which make designing such algo-
rithms difficult. Again ignoring faults, other non-related net-
work traffic, etc., does the communication component of data
partitioning affect the time it takes to solve the problem? How
is it affected? what are these effects? Are there possibilities of
deadlocks, race conditions and other parallel communication
issues? Most fundamentally, two simple questions arise:
• How does the way we partition the data affect the

execution time?
• What is the best way to partition the data so that we

minimize the communication time, thus (hopefully) min-
imizing the execution time?

These questions can be quite difficult to answer—sometimes
impossible to answer—but can have a significant effect on the
overall execution time.

B. State-of-the-art Scientific Computing

1) The Top500: The website www.top500.org maintains a
list of the fastest computers on Earth, updated bi-annually.
At the time of writing, the fastest computer on Earth is “K
computer”, a SPARC64 VIIIfx with 705,024 cores, 1,410,048
GB of memory and a custom “TOFU” network interconnect,
at the RIKEN Advanced Institute for Computational Science
(AICS) in Kobe, Japan. K computer has a performance of
10.51 petaflops (quadrillion floating-point operations per sec-
ond). Most impressively, according to its website, K computer
is (as of June 2011) “only half-built”.3

Of particular interest ot this report however is the 3rd fastest
computer, “Jaguar”, a Cray XT5-HE At Oak Ridge National
Laboratory in Tennessee, USA.4 Jaguar is composed of two
physical partitions (not to be confused with data partitions). It
is these partitions and the fact that is a “small” number of them
that are of particular interest in this report for reasons that will

2www.nics.tennessee.edu/computing-resources/kraken
3http://www.aics.riken.jp/en/kcomputer/
4www.nccs.gov/computing-resources/jaguar/

be apparent in Section III. The first partition is “XT5” with
37,376 Opteron 2435 (Istanbul) processors running at 2.6GHz,
with 16GB of DDR2-800 memory, and a SeaStar 2+ router
with a peak bandwidth of 57.6Gb/s. The resulting partition
contains 224,256 processing cores, 300TB of memory, and a
peak performance of 2.3 petaflop/s (2.3 quadrillion floating
point operations per second). The second partition “XT4” has
7,832 quad-core AMD Opteron 1354 (Budapest) processors
running at 2.1 GHz, with 8 GB of DDR2-800 memory (some
nodes use DDR2-667 memory), and a SeaStar2 router with a
peak bandwidth of 45.6Gb/s. The resulting partition contains
31,328 processing cores, more than 62 TB of memory, over
600 TB of disk space, and a peak performance of 263
teraflop/s (263 trillion floating point operations per second).
The routers are connected in a 3D torus topology for high
bandwidth, low latency, and high scalability. The combined
top500 benchmarked performance is 2,331,000 GFlops.

For interest, 2,331,000 GFlops is 2.27 times faster than
Kraken, and significantly over two million times faster than
the computer I am using at the moment.

What makes Jaguar different to Kraken and K computer?
Jaguar is heterogeneous. Note that this is not necessarily the
reason that Jaguar is faster, it is just a fact. Jaguar is het-
erogeneous in processor architecture, speed, number of cores
per processor, memory, storage, and network communications.
Actually, half of the top ten fastest computers on Earth are
heterogeneous.

We have seen that heterogeneity has pervaded the area of
supercomputers, however there are several other cutting-edge
technologies emerging that are inherently heterogeneous.

2) Grid Computing: Grid Computing has become very
popular for high performance scientific computing in recent
years [14]. Compared to stand-alone clusters and supercom-
puters, grids tend to be more loosely coupled, geographically
dispersed, and are inherently heterogeneous. Unlike some
clusters, grids tend to be built with general purpose scientific
computing in mind. In short, grids seek to combine the
power of multiple clusters and/or sites to solve problems. Grid
computing has been sought and promoted by organizations
such as CERN5 to analyze the vast amounts of data that such
bodies produce.

A primary advantage of grid computing is that each con-
stituent cluster or site can be built from off-the-shelf com-
modity hardware that is cheaper to purchase, upgrade and
maintain. Additionally there has been a major effort to pro-
duce middleware—software which makes the management of
resources and jobs easier and cheaper than a custom solution.
For an example, see SmartGridRPC, a project between the
HCL and the University of Tennessee [15]. The primary
disadvantage is the geographic distribution of sites which
combined with commodity network hardware makes inter-site
communication much slower than the often custom-built, very
expensive networks of supercomputers.

An example of an existing grid is Grid’5000 [16]. Located
in France, Grid’5000 is composed of nine sites. Porto Alegre,
Brazil has just become the official tenth site, and Luxembourg

5public.web.cern.ch/public/

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 4

Fig. 1. The Renater5 Network provides 10Gb/s dark fibre links that
Grid’5000 utilizes for its inter-site communication network (Courtesy of
www.renater.fr)

is expected to join soon. There is also a connection available
which extends to Japan.

Grid’5000 has 1,529 nodes from Altix, Bull, Carri, Dell,
HP, IBM and SUN. A total of 2,890 processors with a total
of 5,946 cores from both AMD and Intel. Local network con-
nections are Myrinet, Infiniband, and Ethernet. All Grid’5000
sites in France are connected with a 10Gb/s dark fibre link pro-
vided by RENATER (The French National Telecommunication
Network for Technology Education and Research)6. Figure 1
Shows the backbones of the Renater Network which connects
the sites of Grid’5000. The important aspect of this figure is
the architecture of the network connecting the various sites
across France, and the connections to sites outside France.

In keeping with the decentralized nature of grid computing,
Grid’5000 is funded by INRIA (The French National Institute
for Research in Computer Science and Control)7, CNRS
(The French National Centre for Scientific Research)8, the
universities of all sites, and some regional councils. This
highlights another advantage of grids—the cost of building
and maintaining them can be shared amongst many different
bodies easily.

A total of 606 experiments are listed on the Grid’5000 web-

6www.renater.fr
7www.inria.fr
8www.cnrs.fr

site as completed or in progress. A tiny sample of experiment
areas include genetic algorithms, task scheduling, middleware
testing, modeling physical phenomena, and linguistic process-
ing. As an example of Grid’5000 performance, the Nancy
site has a 92 node Intel Xeon cluster which achieves 7,360
GFlops, and a 120 node Intel Xeon cluster, which achieves
1,536 GFlops. As the Nancy site is average (actually a little
lower than average) in size for Grid’5000, we can roughly
calculate the power by dividing Nancy’s power by the number
of nodes at Nancy then multiplying by the total number of
nodes in Grid’5000. This roughly equals 65,000 Gflops, or 36
times slower than Jaguar. This of course is just a rough Gflop
count, and does not take any specific parameters into account.

3) Cloud Computing: Cloud computing can have a different
definition, depending on the source. Generally it is a form
of computing where not only the details of who, what and
where a user’s computations are being carried out are hidden
from the user, but perhaps even the knowledge and details of
how to calculate the computations. The general idea is that
a user supplies data to a client program or interface, along
with either a full program or program description, and the
client program then selects the proper, available servers—
which can be anywhere on the globe—and gets the work
carried out. When the computation is complete, the results are
delivered back to the user. For some applications where there
are “canned” solutions available, all the user will have to do is
supply the data and specify what solution is desired. In effect
all the user needs to do is specify the problem and the solution
will be delivered. In most definitions the “cloud” is a metaphor
for the Internet, as one could view cloud computing as the
computational (number crunching) equivalent of the Internet
we know today. All the user knows is to open a web browser,
supply information (what they’re looking for) and the results
come back. The user doesn’t know from who, or where, and
doesn’t care—it just comes.

4) Cluster Computing: In 1982 Sun Microsystems was
founded upon the motto “The Network is the Computer”. This
philosophy paved the way for the popularization of cluster
computing, largely through their software products. At the time
computer operating systems were designed only to run on and
exploit the power of stand-alone computers. Sun’s operating
systems were revolutionary in that they were designed to
harness the power of networks of computers.

Two or more such computers working together to achieve a
common goal constitute a cluster. The topic itself, and much
research focusing specifically on cluster computing as a pure
subject is quite old, dating back 30 or more years. In fact such
systems first started out as “the poor man’s supercomputer”
in academic departments where researchers would leave jobs
running perhaps all night instead of purchasing expensive
supercomputer time [4].

Cluster Computing has since become the dominant ar-
chitecture for all scientific computing, including top500 su-
percomputers. Figure 2 shows the architectures of top500
computers from 1993 to 2010. In 1993 no top500 computers
were clusters. They were MPPs, constellations, SMPs, and
others—even single processor vector machines. It wasn’t until
the late 1990s that the first clusters joined the top500, but

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 5

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Top500 Architecture Share 1993−2008
500

0

19
93 Year

N
um

be
r

of
 S

ys
te

m
s

Cluster

MPP

All Others

20
10

Fig. 2. The architecture share of the top500 list from 1993 to 2010. (Courtesy
of www.top500.org)

their popularity exploded, largely due to low cost and simple
maintenance combined with great power. By 2007 about 80%
of top500 machines were clusters and the number has grown to
the point today where almost all top500 machines are clusters.

Let us demonstrate the prevalence and importance of clus-
ters in the context of this section. Although not comprehensive
in terms of state-of-the art scientific computing, this does
provide a good overview:
• Top500 - Almost all computers in the top500 are based

on cluster platforms
• Grid Computing - All grids are geographically distributed

clusters or clusters of clusters.
• Cloud computing - As the name implies, how clusters

fit in is slightly “fuzzy” but surely any cloud of even a
moderate size would include clusters.

• GPGPU (General-Purpose computing on Graphics Pro-
cessing Units) is done on clusters of GPU machines.

• Multicore computing physically exists at the processor
(single machine) level, but it is clusters of multicores
which make up many top500 machines and grids.

Thus we have seen quite simply that cluster computing is ac-
tually the foundation of all other types of computing discussed
here.

5) GPGPU (General-Purpose computing on Graphics Pro-
cessing Units): Another exciting area of high performance
computing in which interest is gathering great pace is using
Graphics Processing Units (GPUs) alongside traditional CPUs.
Traditionally GPUs are used to take the burden of, and accel-
erate the performance of, rendering graphics (today often 3D
graphics) to a display device. To this end, GPUs have evolved
to become in most cases quite specialized in the operations
necessary to do so, namely linear algebra operations. This
makes them quite unintentionally well suited for many high
performance scientific applications, as many of these rely
heavily or exclusively on linear algebra operations. Examples
of problems which have been explored with this approach
include oil exploration, image processing and the pricing of
stock options [17].

Beyond the confines of linear algebra, interest has also
been gathering in so called General Purpose Computing on

Graphics Processing Units or (GPGPU). This seeks to harness
the computing power of GPUs to solve increasingly general
problems. Recently nVidia and ATI (by far the two largest
GPU manufacturers) have joined with Stanford University to
build a dedicated GPU-based client for the Folding@home
project which is one of the largest distributed computing
projects in the world.

Briefly, Folding@home9 harnesses (mostly) the unused
CPU cycles of home computers across the globe to perform
protein folding simulations and other molecular dynamics
problems. A user downloads a client application and then
when the user’s computer is idle, packets of data from a
server at Stanford are downloaded, and processed by the client
program. Once the data has been processed using the client, the
results are sent back to the server and the process repeated.
At the time of writing the total number of active CPUs on
the project is 286,723 with a total participation of 5,514,891
processing units, 343,843 of which are GPUs, and 1,003,463
are PlayStation 3 consoles running the Cell Processor.10 The
total power of the Folding@home project is estimated to be
2,958,000 Gflops, theoretically 1.27 times faster than Jaguar.
We must keep in mind however that if a problem with the
complexity, memory, and data dependencies of those being
solved on Jaguar was given to the Folding@home network, it
would be incredibly—actually uselessly—slow, and very, very
difficult to program.

Nonetheless, Folding@home is an example of extreme
heterogeneity. Of course, mixed in those millions of computers
are Linux, MAC, and Windows machines as well. The power
of such a distributed, heterogeneous “system” can only be
effectively harnessed due to the nature of the problems that
are being solved. Although extremely large, the problems are
embarrassingly parallel. In this case the key is that there are
no data dependencies. No user computer needs information
from, or needs to send information to, any other user computer.
Further, the order in which data is sent back to the server
does not matter. As long as all of the results eventually come
back, they can be reconstructed back to the original order. If
some results don’t come back (which is inevitable), the data
necessary to get the results are simply farmed out to another
active user. Nonetheless we see a system with the power of
a supercomputer, using a heterogeneous hierarchy at every
level—client/server, system, processor and core.

For another similar project, see SETI@home11, which dis-
tributes data from the Aricebo radio telescope in Puerto Rico
to home users’ computers, which then analyze the data for
signs of extra-terrestrial life.

To wrap up the discussion on heterogeneity and GPGPU,
nVidia has announced a new configuration using their video
cards. Their PhysX physics engine can now be used on two
heterogeneous nVidia GPUs in one machine.12 A physics
engine is software that computes and replicates the actual
physics of events in real-time to make computer graphics more
realistic such as shattering glass, trees bending in the wind,

9http://folding.stanford.edu
10fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats
11setiathome.ssl.berkeley.edu
12www.nvidia.com/object/physx\ faq.html\#q4

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 6

Fig. 3. A basic schematic of the Sony/Sony Computer Entertain-
ment/Toshiba/IBM (STI) Cell processor showing one Power Processing Ele-
ment (PPE) and eight Synergistic Processing Elements (SPEs). (Figure from
NASA High-End Computing, Courtesy of Mercury Computer Systems, Inc.)

and flowing water. In this configuration the more powerful
GPU renders graphics while the other is completely dedicated
to running the PhysX engine.

6) Multicore/Manycore Computing: At a much lower level,
multicore technology has become mainstream for most com-
puting platforms from home through high-performance. Multi-
core processors have more than one core, which is the element
of a processor that performs the reading and executing of an
instruction. Originally processors were designed with a single
core, however a multicore processor can be considered to be
a single integrated circuit with more than one core, and can
thus execute more than one instruction at any given time.
Embarrassingly parallel problems can approach a speedup
equal to the number of cores, but a number of limiting factors
including the problem itself normally limits such realization.
Currently most multicore processors have two, four, six or
eight cores. The number of cores possible is limited however,
and is generally accepted to be in the dozens. More cores
would require more sophisticated communication systems to
implement and are referred to as manycore processors.

The Cell processor is a joint venture between Sony Corpora-
tion, Sony Computer Entertainment, Toshiba, and IBM (STI)
and has nine cores. One core is referred to as the “Power
Processor Element” or PPE, and acts as the controller of the
other eight “Synergistic Processing Elements” or SPEs. See
Figure 3 for a basic schematic of the processing elements
of the Cell processor. The PPE can execute two instructions
per clock cycle due to its multithreading capability. It has
a 32KB instruction and 32KB L1 cache, and a 512KB L2
cache. The PPE performance is 6.2 GFlops at 3.2GHz. Each
SPE has 256KB embedded SRAM and can support up to
4GB of local memory. Each SPE is capable of a theoretical
20.8 GFlops at 3.2GHz. Recently IBM has shown that the
SPEs can reach 98% of their theoretical peak performance
using optimized parallel matrix matrix multiplication.13 The
elements are connected by an Element Interconnect Bus (EIB),
with a theoretical peak bandwidth of 204.8GB/s.

The Sony PlayStation 3 is an example of the Cell processor
at work. To increase fabrication yields, Sony limited the

13www.ibm.com/developerworks/power/library/pa-cellperf/

number of operational SPEs to seven. One of the SPEs is
reserved for operating system tasks, leaving the PPE and
six SPEs for game programmers to use. Clearly this has
utilized the Cell to create a more heterogeneous system. This
is exemplary of a truly heterogeneous system in practice—
functionality can be arranged as desired, and needed.

The Cell processor is used in the IBM “Roadrunner” su-
percomputer, which is a hybrid of AMD Opteron and Cell
processors and is the third fastest computer on Earth (formerly
number 1) at 13,752,776 GFlops. The PlayStation 3 “Gravity
Grid” at the University of Massachusetts at Dartmouth Physics
Department is a cluster of sixteen Playstation 3 consoles
used to perform numerical simulations in the areas of black
hole physics such as binary black hole coalescence using
perturbation theory.14

Clearly the Cell processor is an example of parallel het-
erogeneous computing at a very low-level, with very diverse
applications, and introduces a hierarchy with the PPE control-
ling the SPE’s, while also maintaining some number crunching
abilities itself.

The future of heterogeneous multicore architectures is ex-
panding rapidly. Recently, a research team at the University
of Glasgow has announced what is effectively a 1000 core
processor, although it differs from a traditional multicore chip
as it is based on FPGA technology, which could easily lend
itself to heterogeneous use. Second, the release of the first
multicore mobile phones has been announced. The natural
need for heterogeneity in such platforms is discussed in [18].

Recently, heterogeneous manycore architectures have
proven to be a viable option for the future of HPC [19],
and heterogeneous execution models have been devised [20].
As mentioned in the abstract, and discussed in [18], data
partitioning on multicore architectures is necessary for the im-
plementation of useful parallel algorithms on these platforms.
Most recently, in [21], the authors demonstrate examples of
just that.

C. Heterogeneity

We have seen that heterogeneity and hierarchy have in-
filtrated every aspect of computing from supercomputers to
GPUs, Cloud Computing to individual processors and cores.
We have also seen that in many, many ways all of these
technologies are interwoven and can join to form hybrid
entities themselves.

To conclude it is fitting to state that homogeneity (even
if explicitly designed) can be very difficult and expensive to
maintain, and easy to break [22]. Any distributed memory
system will become heterogeneous if it allows several inde-
pendent users to simultaneously run applications on the same
system at the same time. In this case different processors will
inevitably have different workloads at any given time and
provide different performance levels at different times. The
end result would be different performances for different runs
of the same application.

Additionally, network usage and load, and therefore com-
munication times will also be varied with the end result being

14arxiv.org/abs/1006.0663

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 7

different communication times for a given application, further
interfering with the delivery of consistent performance for the
same application being run more than once.

Component failure, aging, and replacement can all also
impact homogeneity. Are identical replacement components
available? Are they costly? Do all components deliver uniform
and consistent performance with age? Even if these problems
are managed, eventually when upgrading or replacement time
comes, all upgrades and replacements must be made at the
same time to maintain homogeneity.

We see now that heterogeneity is the natural state of parallel
and distributed systems. Most interestingly, vendors are now
starting to intentionally design and construct systems and
platforms for high performance scientific computing which
are heterogeneous from the outset. This is perhaps a natural
progression as specialized hardware and software aimed at
one particular class of problem is desired over more general-
purpose approaches that yield poor performance.

D. Objectives

The main goal of this report is to present, validate, and
experimentally demonstrate a new partitioning algorithm for
high performance scientific computing on parallel hierarchal
heterogeneous computing platforms. This partitioning could
theoretically be deployed on any heterogeneous architecture
including all those discussed in Section I-B. It will also be
shown that this partitioning can serve as the basis for other
new partitionings. The following is a list of other goals that
will and must be realized along the way. First the state-of-
the-art will be reviewed, before the underlying mathematical
principles of this new partitioning are explored. For the cases
in which it applies the partitioning will be discussed and it’s
optimality proven. A hybrid algorithm will be discussed which
is designed to be optimal in all cases for certain problem
domains. The construction of a heterogeneous cluster hand-
designed specifically for problems discussed in this report will
be detailed. The partitioning will be compared to the state-of-
the-art and both its benefits and deficits discussed. The parti-
tioning will be modelled, simulated, and then experimentally
verified before being shown to be beneficial to application
areas indicative of those widely in use today. Then, future
directions of research will be presented.

Finally, as stated, most heterogeneous algorithms and par-
titionings are designed by modifying existing homogeneous
ones. The ultimate goal of this report is to demonstrate
the concept that unintuitive, non-traditional algorithms and
partitionings, designed with heterogeneity in mind from the
start, can result in better—and optimal—algorithms and par-
titionings for high performance computing on heterogeneous
platforms.

E. Outline

Section II: Background and Related Work
In this section existing research in the area of heterogeneous
parallel data partitioning and matrix matrix multiplication is
explored. The state-of-the-art is clearly described and the
benefits and drawbacks of current techniques are detailed.

This section describes the design and construction of a het-
erogeneous cluster specifically for the simulation and testing
of heterogeneous algorithms and partitionings. The cluster is
unique in its ability to be configured in network parameters
and topology which allows for testing on any number of
heterogeneous scenarios.

Section III: Partitioning a Matrix in Two – Geometric
Approaches
This section presents and mathematically validates a new
data partitioning method for matrix matrix multiplication on
heterogeneous networks. A geometrical approach is used to
present the design of the partitioning. The partitioning is
shown to be optimal in most cases, and a hybrid partitioning
is proposed which would be optimal in all cases.

Section IV: The Square-Corner Partitioning
This section defines the Square-Corner Partitioning and its
application to matrix matrix multiplication. The optimality of
the partitioning as well as other benefits such as overlapping
computation and communication are explored. Experimental
results are presented, first on two processors, then on small
groups of clusters, then on two larger clusters.

Section V: The Square-Corner Partitioning on Three
Clusters
In this section the Square-Corner Partitioning is extended
to three clusters. Both topologies possible (fully-connected
and star) are explored. Experimental results are given for
simulations on three processors and three clusters. Results
of overlapping computation and communication are also ex-
plored.

Section VI: Applications: Max-Plus Algebra and Dis-
crete Event Simulation on Parallel Hierarchal Heteroge-
neous Platforms
This section presents the results of applying the Square-Corner
Partitioning on Max-Plus Algebra operations and a Discrete
Event Simulation Application.

Section VII: Moving Ahead – Multiple Partitions and
Rectangular Matrices
This section presents work on extending partitionings to more
than three and to non-square matrices. The Square-Corner
Partitioning is shown to be useful for the multiplication of
rectangular matrices in particular.

Section VIII: Conclusions and Future Work
In this section overall conclusions of this work are drawn, and
indications of exciting areas of future work are detailed.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 8

II. BACKGROUND AND RELATED WORK

In 1997, van de Geijn and Watts noted: “It seems somewhat
strange to be writing a paper on parallel matrix multiplication
almost two decades after commercial parallel systems first
became available. One would think that by now we would
be able to manage such an apparently straight forward task
with simple, highly efficient implementations. Nonetheless, we
appear to have gained a new insight into this problem” [23].

It is now 2011 and researchers across the globe are still
working with great ferocity on parallel matrix multiplication
algorithms! This section presents a summary of parallel matrix
multiplication, first and briefly on homogeneous algorithms,
then heterogeneous algorithms. We start with the homoge-
neous case because most heterogeneous algorithms are modi-
fications of their homogeneous counterparts. We will of course
end with the current state-of-the-art in heterogeneous parallel
MMM algorithms.

In order to discuss these algorithms however, we must
discuss data distribution and therefore data partitioning, which
is the focus of this report. The partitioning of data directly af-
fects the communication between processing elements. These
communications may be over a super-fast bus between cores
or long-distance copper or fibre networks, but either way it
is typically communications that are an order of magnitude
or more slower than processing speed and therefore the most
significant bottleneck in parallel and distributed algorithms.

There is a common thread ran through the motivation in
Section I-B, from cloud computing with theoretically millions
or more machines at work, through supercomputers with
hundreds of thousands of processors, down to multicore chips
on single machines. This thread is heterogeneity. In fact
there was another common thread, distribution, which is due
to necessary physical separation of computing elements. Be
they two computers on opposite sides of the Earth, or two
cores separated by hundredths of a centimeter, computing
elements need to be physically separated and therefore must
communicate to work together.

This brings up an interesting question—Why must process-
ing elements be physically separated? There are many answers
to this question, the main reasons being:

(i) Heat. Too many processing elements in too small a space
creates too much heat which increases cooling costs in
the best case, and in the worst case leads to component
failure.

(ii) Cost. Along with cooling cost, communication hardware
costs are perhaps the largest cost factors. The ultra-
fast communication buses between cores and processors
and main-memory are simply too expensive to scale
up. In fact such devices only barely scale out of the
micro and into the macro scales. It is much, much
cheaper to connect machines with commodity, off-the-
shelf communication hardware, than two processors with
an ultra-fast motherboard bus that is metres or more long.

(iii) Convenience. For economical, social and other reasons,
it makes sense to distribute computing resources geo-
graphically. In the case of the Folding@home project
introduced in the motivation, the utilized resources were

already geographically distributed, and then exploited.
We also saw that there are computing resources, particu-
larly grids (for example Grid’5000 [16]), that are inten-
tionally built to be geographically distributed. This is not
done due to pure physical necessity, but to make cost,
maintenance, upgrading and logistics more convenient.

(iv) Modularity and Reliability. Closely related to conve-
nience is the modularity and reliability of the system
itself. If a supercomputer was just a single, massive
processor (if physically feasible), what would happen if
it or a crucial component failed? Everything would grind
to a halt. What happens if a chip, node, or even an entire
cluster or even in the extreme an entire site in Grid’5000
goes down? All other processors, nodes, clusters, and
sites go merrily on with their business. This gets even
better if the middleware can handle fault tolerance. The
user may not realize that a component failed, other than
a possibly longer execution time, but not necessarily, and
what counts most is the results will still be correct.

(v) “That’s just the way it is” or ‘‘That’s just the way
things evolve”. Everything from beings with exoskele-
tons to animals with internal skeletons, from dinghies to
the most massive cargo ships, from subatomic particles
to the most massive of stars have a physical size limit
per entity. At some point the only way to generate more
beings, carrying capacity, or energy, is to make more of
them. More things means more space, which necessitates
physical distribution.

There are certainly more parameters, especially when indi-
vidual cases are examined. Perhaps one more question could
be asked, particularly in reference to (i) and (ii) above. Why
can’t a chip be manufactured which is just one big chip?
Let’s ignore heat, cost, reliability and other obvious answers
and instead of answering the question directly just render the
question itself a moot point. If it were possible to do so we
would still be dealing with communications. Communications
between individual registers or even in the extreme, transistors
on the chip itself, still need to be done optimally or at least
efficiently. Again, as in Section I-A we see that communication
between different entities is an inherent fact of computing, no
matter what scale we are dealing with and no matter how we
look at or abstract the issue.

A. Parallel Computing for Matrix Matrix Multiplication

Currently parallel computing is undergoing a paradigm
shift. It is spreading from supercomputer centers which have
been established utilizing specialized, often custom-built and
terribly expensive computers which are used and programmed
by highly trained and specialized people to clusters of off-the-
shelf commodity workstations that (with the proper libraries
and some skill) can be used by “ordinary” people. Here,
ordinary is taken to mean people whose primary profession
need not be programming supercomputers. Such clusters have
already pervaded academia and industry, but promise to do
so further, and are now becoming accessible to and “toys”
of home users, who desire to use them. Indeed these clusters
remain the poor man’s supercomputer [24] as discussed in the

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 9

motivation. Cloud Computing promises to carry this concept
even further, with additional abstraction, and less expertise
needed by the user.

From this point forward we will not consider heterogeneity
(or homogeneity for that matter) and communication to be
exclusive. From one follows the other. Any parallel architec-
ture (homogeneous or heterogeneous) without some commu-
nication somewhere is useless. For this reason we will focus
discussion on parallel computing in general at first. We will
start with the more simple (and restricted) case, homogeneous
parallel computing.

This report exclusively addresses the linear algebra kernel
of Matrix-Matrix Multiplication (MMM) as the prototype
problem for High Performance Parallel Computing on Het-
erogeneous Networks (with the exception of some application
areas explored later in Section VI). This is a common and
justifiable decision as matrices are probably the most widely
used mathematical objects in scientific computing [8]. Further
to that, MMM is the prototype for a group of tightly coupled
kernels with a high special locality that should be implemented
efficiently on parallel platforms [both homogeneous and het-
erogeneous] [4]. Throughout this report, if only one matrix is
being discussed, it may be thought of as the product C of two
other matrices A and B, such that C = A×B. In these cases,
A and B are partitioned identically to C. This has become a
standard in the field.

B. Data Partitioning for Matrix Matrix Multiplication on
Homogeneous Networks

The problem of matrix partitioning on homogeneous net-
works has been well studied. It has perhaps been studied to
exhaustion with the exception of the inclusion of application
specific issues, or particular hardware/software considerations.
In other words the theoretical underpinnings have been estab-
lished and are very unlikely to undergo a significant change.
For more see [25].

Let us start then with homogeneous matrix partitioning for
three reasons:

1) Because it is well established

2) Because most heterogeneous algorithms are designed
either from, or at least with, their homogeneous
counterparts in mind

3) It is often the homogeneous counterparts that heteroge-
neous algorithms are compared to, particularly to address
their effectiveness or lack thereof [26].

When partitioning a matrix for distribution between ho-
mogeneous processors15, the problem of load balancing is
easy, as all processors have equal speed, and therefore each
partition will have equal area. Thus the issue quickly turns
to minimizing communications. The simplest homogeneous
partitioning of a matrix is in one dimension, with the matrix

15We begin by talking about partitioning and distribution among individual
processors and later will scale this up to individual clusters. Entity will
sometimes be used to refer to any unit capable of processing be it a core,
processor, cluster, etc.

Fig. 4. A one-dimensional homogeneous (column-based) partitioning of a
matrix with a total of nine partitions.

Fig. 5. A two-dimensional homogeneous partitioning of a matrix with a total
of nine partitions.

partitioned into either rows or columns of equal area as
in Figure 4. The other way to accomplish a homogeneous
partitioning is to use a two-dimensional partitioning, which
results in a grid of partitions as in Figure 5.

Let us start with the two-dimensional case. We have a matrix
multiplication C = A × B and for simplicity we make each
a square n × n matrix. Assume we have p homogeneous
processors P1, P2, . . . , Pp. Again for simplicity let us assume
that the processors are arranged in a grid of size p1 × p2 = p
such that p1 = p2. In this case the processors and the partitions
of the matrix overlay each other exactly such that at each step
k,
• Each processor Pi,k, i ∈ . . . p1 broadcasts horizontally
ai,k to processors Pi,∗

• Each processor Pk,j , j ∈ . . . p2 broadcasts vertically bk,j
to processors P∗,j

This allows each processor Pi,j to update its portion of C,
using ci,j = ci,j + ai,k × bk,j . In other words, at each step of

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 10

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 6. A two-dimensional homogeneous partitioning of a matrix with a total
of nine partitions showing pivot rows and columns and the directions they are
broadcast.

the algorithm each processor does the following:
• Each processor broadcasts the part of the pivot column

which it owns horizontally to the processors in the same
processor row which the processor resides in

• Each processor broadcasts the part of the pivot row which
it owns vertically to the processors in the same processor
column which the processor resides in.

This is shown in Figure 6.
The popular ScaLAPACK library uses this technique, but

uses a blocked version [27]. In this case, each matrix element
(say Ci,j , Ai,j , and Bi,j) is a square r×r block. For each pro-
cessing entity there will be an optimal value of r, depending
on memory and other architecture-specific details. Usually the
number of blocks d(n/r)e×d(n/r)e is greater than the number
of processors p1 × p2. In this case the blocks are distributed
in a cyclic fashion so that each processor is responsible for
updating several blocks of the C matrix at each step k.

It is worth noting at this point that the total volume of
communication (TVC) of the calculation described above is
proportional to the sum of the half perimeters (SHP) of each
partition. This can be viewed rather simply; at each step, each
processor responsible for a square of x×x elements receives x
elements from a row-mate and x elements from a column-mate
for a total of 2x elements. Since the partitions are all equal
in size and dimension (if

√
p evenly divides n), the same will

be true for all processors. Thus at each step each processor is
receiving a number of elements proportional to 2×x, the sum
of each partition’s half perimeter.

It is easy to show that the two-dimensional partitioning has
a lower TVC than the one-dimensional partitioning. Given
a fixed area, the rectangle covering that area and having
the smallest perimeter is a rectangle that is square, and the
fact that any other partitioning strategy would force at least
one partition to be non-square, any other partitioning strategy
(including the one-dimensional partitioning described above)
would result in a greater SHP, and therefore a greater TVC.

There are other parallel algorithms for MMM, such as:

Fig. 7. A two-dimensional heterogeneous partitioning consisting of nine
partitions

• Cannon’s algorithm [28]
• DNS [25]
• one-dimensional and two-dimensional Systolic [29]
• Broadcast Multiply Roll [30]
• the Transpose Algorithm [31]
• SUMMA (Scalable Universal Matrix Multiplication Al-

gorithm [23], which is used in PBLAS (the Parallel Basic
Linear Algebra Subprograms) library [32]

Each has its advantages and disadvantages and a discussion of
each is beyond the scope of this report. They are mentioned
for completeness.

C. Data Partitioning for Matrix Matrix Multiplication on
Heterogeneous Networks

Now let us assume a heterogeneous network. We have p
heterogeneous processors P1, P2, . . . , Pp, each free to run at
a speed unique to all other processors. We will express these
speeds relatively as s1, s2, . . . , sp. Similar to the homogeneous
algorithm above at each time step k, there will be a pivot row
broadcast vertically and a pivot column broadcast horizontally.
These rows and columns can be either made of individual
matrix elements or blocks of elements as described above.
If we are discussing blocks, they will remain square for
efficiency on a processor-local level. We will now see how
a modification of the homogeneous algorithm above can lead
to heterogeneous ones.

The heterogeneity of processors means that we cannot nec-
essarily partition the matrix into squares. We will generalize
and partition the matrix into non-overlapping rectangles. Sim-
ilar to the homogeneous algorithm, data should be partitioned
so that the area of each rectangular partition is proportional to
the speed of the processor who owns it. From a load-balancing
point of view it is only the area of the rectangles that matter.
The dimensions of each rectangle are free for us to choose.
Figure 7 shows a heterogeneous partitioning of nine rectangles.

The difficult question is this: What dimensions should each
rectangle have to minimize the total inter-partition (and there-
fore inter-cluster, if each partition were owned by a cluster)

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 11

volume of communication? Actually the word difficult turns
out to be an understatement. This question (when formally
defined) turns out to be NP-complete [5]. There is no known
polynomial time solution to this question. In other words, for
even modestly sized problems, unreasonable (or impossible)
lengths of time would be needed to achieve an optimal
solution. We must therefore resort to approximation algorithms
or heuristics. Generally these begin by imposing a restriction
or restrictions on the proposed solution to allow it to run in
polynomial time. The next three subsections will explore the
state-of-the-art in attempts to do so.

Before we do it is worth mentioning (again for complete-
ness) that we are and will be discussing static partitionings
only. Static partitionings are determined based on input data,
and after that the partitioning does not change throughout the
course of the program. A dynamic partitioning is one that does
(more properly has the ability to) change the initial partitioning
before the program terminates. One way to do this is use the
past to predict the future [4]. This method determines how
to best change the partitioning based on how the program
is commencing during execution. There also exist dynamic
master-slave techniques. These all may suffer from various
drawbacks, not the least that they must be very general and
therefore less likely to perform as well as static approaches
which are tailored to a specific problem domain.

D. Restricting the General Approach: A Column Based Par-
titioning

In [4] the authors state the general matrix partitioning
problem:
• Given p computing elements P1, P2, . . . , Pp, the relative

speed of which is characterized by a positive constant Si,

where
p∑
i=1

Si = 1

• Partition a unit square into p rectangles so that
– There is a one to one mapping of elements to

rectangles
– The area of the rectangle allocated to element Pi is

equal to Si where i ∈ {1, . . . , p}.

– The partitioning minimizes
p∑
i=1

(wi + hi), where wi

is the width of the rectangle and hi is the height of
the rectangle assigned to element Pi.

Partitioning the unit square into rectangular partitions with
areas proportional to the speed of the processing elements
mapped to them is aimed at balancing the load of the work
done by each processing element. As a rule there will be more
than one partitioning satisfying this condition.

Minimizing the sum of half-perimeters of the partitions,
p∑
i=1

(wi + hi) is aimed at minimizing the total volume of

communication between the elements. This is possible because
with the problem of MMM, at each step, each processing
element that does not own the pivot row and column receives
an amount of data proportional to the half-perimeter of the
rectangular partition it owns. Therefore the amount of data

communicated at each step between all processing elements
will be proportional to the sum of the half-perimeters of all

partitions,
p∑
i=1

(wi + hi), less the sum of the heights of the

partitions owning the pivot column, (one in the case of the
unit square), and less the sum of the widths of the partitions
owning the pivot row (also one for the unit square). Thus at

each step the total data communicated will be
p∑
i=1

(wi+hi)−2.

Because the total amount of data communicated between the
processing elements is the same at each step of the algorithm,
the total amount of data communicated during the execution

of the algorithm will also be proportional to
p∑
i=1

(wi+hi)−2.

Therefore minimization of
p∑
i=1

(wi+hi)−2 will minimize the

total volume of communication between all partitions. Clearly

any solution minimizing
p∑
i=1

(wi + hi) will also minimize

p∑
i=1

(wi + hi)− 2.

The authors of [4] have shown that this general partitioning
problem is NP-Complete and therefore heuristics must be
resorted to in order to find optimal solutions. Such a heuristic
is presented by [4] which restricts the rectangles of the
partitioning to forming columns such as in Figure 8. The
algorithm follows:

Algorithm 2.1 [4]: Optimal column-based partitioning of a
unit square between p heterogeneous processors:
• First, the processing elements are re-indexed in the non-

increasing order of their speeds, s1 ≥ s2 ≥ . . . ≥ sp.
The algorithm only considers partitionings where the i-
th rectangle in the linear column-wise order is mapped
to processor Pi, i ∈ {1, . . . , p}.

• The algorithm iteratively builds the optimal c column
partitioning β(c, q) of a rectangle of height 1 and width
q∑
j=1

sj for all c ∈ {1, . . . , p} and q ∈ {c, . . . , p}:

– β(1, q) is trivial.
– For c > 1, β(c, q) is built in two steps:
∗ First, (q − c + 1) candidate partitionings
{βj(c, q)}(j ∈ {1, . . . , q− c+1}) are constructed
such that βj(c, q) is obtained by combining the
partitioning β(c−1, q−j) with the straightforward
partitioning of the last column (the column num-

ber c) of the width
q∑

i=q−j+1

si into j rectangles

of the corresponding areas sq−j+1 ≥ sq−j+2 ≥
. . . ≥ sq .

∗ Then, β(c, q) = βk(c, q) where βk(c, q) ∈
{βj(c, q)q−c+1

j=1 } and minimizes the sum of the
half-perimeters of the rectangles.

• The optimal column-based partitioning will be a parti-
tioning from the set {β(c, p)pc=1} that minimizes the sum

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 12

Fig. 8. An example of a column-based partitioning of the unit square into
12 rectangles. The rectangles of the partitioning all make up columns, in this
case three.

of half-perimeters of rectangles.
Algorithm 2.1 runs in O(p3) time.

E. A More Restricted Column-Based Approach

[33], further restrict the column-based geometrical parti-
tioning by assuming that the processing elements are already
arranged in a set of columns (i.e. assuming that the number of
columns c in the partitioning and the mappings of rectangles
in each column to the processors are given). The algorithm is
as follows.

Algorithm 2.2: [33]: An optimal partitioning of a unit square
between p heterogeneous processors arranged into c columns,
each of which is made of rj processors where j ∈ {1, . . . , c}:
• Let the relative speed of the i-th processor from the j-th

column, Pi,j be si,j where
c∑
j=1

rj∑
i=1

si,j = 1.

• First, partition the unit square into c vertical rectangular

slices so that the width of the j-th slice wj =
rj∑
i=1

si,j .

– This partitioning makes the area of each vertical slice
proportional to the sum of speeds of the processors
in the corresponding column.

• Second, each vertical slice is partitioned independently
into rectangles in proportion to the speeds of the proces-
sors in the corresponding column.

Algorithm 2.2 runs in linear time. Figure 9 shows this for
a 3× 3 processor grid.

F. A Grid Based Approach

[8] describes a partitioning which imposes a further restric-
tion on the column-based approaches. The restriction is that
the partitionings must form a grid as in Figure 10. This can
be viewed from another approach. The grid based partitioning
is one which partitions the unit square into rectangles so that

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

P P

P

P

P
P

P P P

P

P1 2 3

12 1311

21 22
23

31
32

33

P

_ _ _

Fig. 9. An example of Algorithm 2.2, a column-based partitioning for a
3× 3 processor grid. Two steps are shown: Partitioning the unit square into
columns then independently partitioning those columns into rectangles.

Fig. 10. A grid based partitioning of the unit square into 12 partitions.

there exist p and q such that any vertical line crossing the
square will intersect exactly p rectangles and any horizontal
line crossing the square will intersect exactly q rectangles,
regardless of where these lines cross the unit square.

It is proposed and proven in [8] that in the case of a unit
square partitioned into a grid of c columns, each of which
is partitioned into r rows, the sum of half-perimeters of all
partitions will be equal to (r+c). The corollaries which pre-
cipitate from this is that the optimal grid based partitioning is
one which minimizes r+c, and that the sum of half-perimeters
of the optimal grid-based partitioning does not depend on the
mapping of the processors onto the nodes of the grid. The
algorithm for the optimal grid-based partitioning follows.

Algorithm 2.3: [8]: Optimal grid-based partitioning of a unit
square between p heterogeneous processors:

• Find the optimal shape r × c of the processor grid such
that p = r × c and (r + c) is minimized.

• Map the processors onto the nodes of the grid.
• Apply Algorithm 2.2 of the optimal partitioning of the

unit square to this r × c arrangement of the p heteroge-
neous processors.

Step one finds the optimal shape of the processor grid
that minimizes the sum of half-perimeters of any grid based
partitioning for any mapping of the processors onto the nodes
of the grid. Step two simply does the mapping (by any means).

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 13

Fig. 11. An optional grid based partitioning returned by Algorithm 2.3.

Step three then finds one such partitioning where the area of
each rectangle is proportional to the speed of the processor
owning it. It is noted that the solution is always column-based
due to the nature of Algorithm 2.2. The first step of Algorithm
2.3 is described by Algorithm 2.4.

Algorithm 2.4 [8]: Find r and c such that p = r× c and
(r + c) is minimal:

r = b√pc
while (r > 1)

if ((p mod r) == 0)
goto stop;

else
r −−;

stop: c = p/r

Figure 11 shows an optimal grid based partitioning returned
by algorithm 2.3.

In [8] the correctness of these algorithms is proven and
the complexity of Algorithm 2.4 is shown to be O(p3/2).
Experimental results are also given which demonstrate the
effectiveness of the grid based approach.

G. Cartesian Partitionings

The grid-based partitioning strategy is not the most re-
strictive partitioning problem that has been addressed. A
Cartesian partitioning can be obtained from a column-based
partitioning by imposing an additional restriction; namely that
the rectangular partitionings also make up rows as seen in
Figure 12. This results in any given partition having no more
than four direct neighbors (up, down, left, right).

Cartesian partitionings are important in heterogeneous algo-
rithm design due to their scalability. This is due to no partition
having more than one neighbor in any given direction. This
lends itself to a scalable partitioning for algorithms which have
communication patterns which only involve nearest neighbors,
or for that matter, communications only between partitions in
the same row and/or column.

Fig. 12. A cartesian partitioning of the unit square into 12 rectangular
partitions. All partitions have no more than four direct neighbors: up, down,
left, right.

Due to the additional restriction imposed by a Cartesian
partitioning an optimal partitioning may not be achievable.
The load between partitionings may not be perfectly balanced
for some combinations of relative computing element speeds.
This renders relative speeds unusable and the problem should
be reformulated in terms of absolute speeds. The Cartesian
partitioning problem can be formulated as follows:
• Given p processors, the speed of each of which is char-

acterized by a given positive constant, find a Cartesian
partitioning of a unit square such that:

– There is a one to one mapping of partitions to
computing elements.

– The partitioning minimizes i,j
max

{
hi×wj

sij

}
, where

hi is the height of partitions in the i-th row, wj is
the width of partitions in the j-th column, si,j is
the speed of the computing element owning the j-
th partition in the i-th row, where i ∈ {1, . . . , r},
j ∈ {1, . . . , c}, and p = r × c.

To the author’s knowledge the Cartesian problem has not
been studied as stated above in general form. An algorithm to
solve this problem has to find an optimal shape r × c of the
computing element grid, the mapping of the elements onto the
grid, and the size of the partitions allocated to the elements.
Simplified versions of the problem have been studied however
[6], [34]. If the shape r × c of the partitioning is given the
problem is proven to be NP-Complete [34]. In addition it is
not known if given both the shape r × c of the grid and the
mapping of computing elements onto the grid are given, there
exists a polynomial time solution.

An approximate algorithm of the simplified Cartesian prob-
lem where the shape r × c is given in Algorithm 2.5.

Algorithm 2.5 [34]: Find a Cartesian partitioning of a unit
square between p processors of the given shape p = r × c:
• Step 1. Arrange the processors so that if linearly ordered

row-wise, beginning from the top left corner, they will

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 14

go in a nonincreasing order of their speeds.
• Step 2. For the processor arrangement, apply a

known algorithm to find an approximate solution,
{hi}ri=1, {wj}cj=1.

• Step 3.Calculate the areas hi, wi of the rectangles of the
partitioning.

• Step 4. Rearrange the processors so that ∀i, j, k, l : sij ≥
skl ⇔ hi × wj ≥ hk × wl.

• Step 5. If Step 4 does not change the arrangement of the
processors then return the current partitioning and stop
the procedure else go to Step2.

H. Conclusion

In this section we saw that communication is unavoidable
in parallel computing. Normally this is thought of in terms
of computer networks: wires, switches, routers, etc. However
it must be realized that communication occurs even at lower
levels than two geographically distributed clusters. It happens
between machines in the same rack, and even between cores
on a single processor.

We then examined how the partitioning of data, specifically
in the case of matrix matrix multiplication, can affect the
amount of data that needs to be communicated. After briefly
looking at elementary one and two-dimensional partition-
ings, several state-of-the-art methods were explored including
general two-dimensional cases, more restricted column-based
approaches, even more restricted strategies such as grid based,
and finally very restricted two-dimensional approaches in
cartesian cases. All of these partitioning strategies have two
common threads. They all balance load and they all seek
to minimize the sum of communication between partitions,
normally through imposing restrictions. However this is not a
hard rule, as in some cases relaxing restrictions can lead to
better solutions.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 15

III. PARTITIONING A MATRIX IN TWO - GEOMETRIC
APPROACHES

Section II concluded with a continuing thread which was
common to a number of partitionings that improved perfor-
mance by introducing restrictions to the general partitioning
problem. It is however possible in some cases to improve
performance by relaxing restrictions. In this section we explore
one such case. That case is partitioning a matrix in two. The
choice of two partitionings is not a restriction however, as
future sections will show that this approach is not restricted
to just two partitions. It is how the partitions themselves are
formed that is the relaxation of restriction.

The initial motivation which led to this work stems from two
sources. First, there are many general heterogeneous matrix
partitioning algorithms which work well for several, dozens,
hundreds, or even thousands of computing entities. We will
see that all result in a simple, and non-optimal partitioning
when applied to architectures of small numbers of computing
entities—in the case of this section, two. As stated earlier we
intentionally set out to investigate the case of a small number
of computing entities to see what is happening in what is this
perceived (by some researchers) “degenerate” case. Despite
its existence for at least 30 years, parallel MMM research
has almost completely ignored this area. This is perhaps
due to a lack of interest in a small number of processors
or computers working together. Indeed in these cases the
speedup benefits are obviously small. However with modern
architectures, particularly cluster-based architectures and grids,
small numbers of clusters or sites working together can clearly
yield a very attractive benefit. As we will see, perhaps a small
number of computing entities is not as “degenerate” as some
researchers have believed.

Second, this was borne of a keen awareness of the parallel,
distributed and especially the heterogeneous nature of comput-
ing platforms which are omnipresent in computing today. In
addition, most parallel and distributed algorithms in existence
today are designed for and only work well on homogeneous
platforms. Finally, most heterogeneous algorithms are based
on their homogeneous counterparts. It is now necessary for
many new algorithms to be designed with heterogeneous
platforms in mind from the start.

A. A Non-Rectangular Matrix Partitioning

All of the state-of-the-art matrix partitioning areas discussed
thus far including the specific examples explored, had two
common threads—they all balance computational load and
they all seek to minimize communication between partitions.
Both of these objectives are sought in order to minimize the
overall execution time of matrix matrix multiplications.

It is true that there was another design feature common
to all. This feature is that they are all rectangular. In all
algorithms discussed, the solution sets contained only par-
titionings which result in nothing but rectangular partitions.
Thus, it seems that the partitioning problem itself is somewhat
restricted. Most researchers believe that allowing for non-
rectangular partitions (relaxing this rectangular restriction) will
not significantly improve the performance of the partitioning,

1

2s

s

Fig. 13. A heterogeneous non-rectangular partitioning consisting of two
partitions, one rectangular and one a non-rectangular polygon.

and at the same time significantly complicate the solution of
the partitioning problem.

This statement seems plausible, however in this section
we introduce a non-rectangular partitioning solution that can
significantly outperform counterpart rectangular partitionings.
In some cases this non-rectangular partitioning can prove to
be optimal amongst all partitionings. In addition, it does not
significantly add to the complexity of the solution itself.

First we will define exactly what non-rectangular is meant
in this context.

B. The Definition of Non-Rectangularity

In Figure 13 there are two partitions, s1 and s2. s1 is non-
rectangular and s2 is rectangular. To precisely define what a
non-rectangular partition is in context of the general parti-
tioning problem, we start with the definition of a rectangular
partitioning.

Definition 3.1 A partitioning of any problem whose solution is
to partition the unit square is rectangular if all of the following
four rules apply:

1) The unit square is completely tiled by partitions
2) No partitions overlap
3) All partition boundaries are parallel to the boundaries of

the unit square
4) All partitions are rectangular
It would seem at first that in order to define a non-

rectangular partitioning, all that is needed is to eliminate Def-
inition 3.1, Rule 4. This seems reasonable as non-rectangular
partitions would now be allowed, and Definition 3.1, Rule 3
would eliminate circles, triangles, and other exotic partitions.

However, a definition is needed that makes non-rectangular
partitionings such as that in Figure 13 and all purely rectan-
gular partitionings mutually exclusive. Eliminating Definition
3.1, Rule 4 would not do so, as purely rectangular partitions
would still fit into the new definition of non-rectangular
partitions.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 16

The solution is to replace Definition 3.1 Rule 4 with the
following—At least one partition is non-rectangular. This
gives us the following definition.

Definition 3.2 A partitioning of any problem whose solution
is to partition the unit square is non-rectangular if all of the
following four rules apply:

1) The unit square is completely tiled by partitions
2) No partitions overlap
3) All partition boundaries are parallel to the boundaries of

the unit square
4) At least one partition is non-rectangular
We are now in a position where rectangular and non-

rectangular partitionings are mutually exclusive, and we can
differentiate between, and therefore compare, rectangular and
non-rectangular partitionings.

C. A Non-Rectangular Partitioning - Two Partitions

In Section II-D, the Matrix Partitioning Problem [4] was
stated. It is restated more formally as Problem 3.1.

Problem 3.1: The Matrix Partitioning Problem
• Given p computing elements P1, P2, . . . , Pp, the relative

speed of which is characterized by a positive constant si,

where
p∑
i=1

si = 1

• Partition a unit square into p rectangles so that
– There is a one to one mapping of elements to

rectangles.
– The area of the rectangle allocated to element Pi is

equal to si where i ∈ {1, . . . , p}.

– The partitioning minimizes
p∑
i=1

(wi + hi), where wi

is the width of the rectangle and hi is the height of
the rectangle assigned to element Pi.

As Problem 3.1 is restricted to rectangles, we need to
reformulate the problem to be more general in order to allow
for non-rectangular partitions.

Problem 3.2: The General Matrix Partitioning Problem
• Given p computing elements P1, P2, . . . , Pp, the relative

speed of which is characterized by a positive constant si,

where
p∑
i=1

si = 1

• Partition a unit square into p polygons so that
– There is a one to one mapping of elements to

polygons.
– The area of the polygon allocated to element Pi is

equal to si where i ∈ {1, . . . , p}.
– The partitioning minimizes the sum of half perime-

ters of all polygons.

In the case of a very small problem size, say (p = 2),
every rectangular partitioning of Problem 3.1 or Problem 3.2
will result in one such as that in Figure 14. This is because
there is no other way but to partition the unit square into

1

1

1 2s s

Fig. 14. A rectangular (column-based) partitioning to solve Problem 3.2. This
is the rectangular counterpart of the non-rectangular partitioning in Figure 15.

two rectangles but to draw a straight line across the square,
while ensuring that each rectangle is of the appropriate area as
dictated by Problem 3.1 (or each partition is of the appropriate
area as dictated by Problem 3.2).

As Problems 3.1 and 3.2 are equivalent, except that Problem
3.2 relaxes the restriction of rectangular solutions, clearly any
rectangular partitioning algorithm can be applied to either, and
generate the same solution.

A non-rectangular partitioning however can only be applied
to Problem 3.2, but since Problem 3.2 is more general this is
not a problem. Such an algorithm follows:

Algorithm 3.1: An algorithm to solve Problem 3.2, the
General Matrix Partitioning Problem, for p = 2.
• Step 1. Re-index the processing elements Pi in the non-

decreasing order of their speeds, s2 ≤ s1.
• Step 2. Create a rectangular partition of size s2 in the

lower right corner of the unit square.
• Step 3. Map P2 to the rectangular partition of size s2,

and map P1 to the remaining non-rectangular balance of
the unit square of size 1− s2 = s1.

The result of Algorithm 3.1 is of the form in Figure 15.
In each case the volume of communication is proportional

to the sum of half perimeters of all partitions.
• For the rectangular case this is equal to 3 .
• For the non-rectangular case in Figure 15 this is equal to

Equation 1.

(
1 + 1 + (1− y) + (1− x) + x+ y

2
+ x+ y

)
= 2 + x+ y

(1)

We have left the relative speeds si of the processors Pi as
unknowns (but remember that their sum equals 1), and since
both are non-zero, we can make the following observations:
• For the rectangular partitioning, the sum of half perime-

ters is equal to 3 regardless of the ratio between si and s2.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 17

1

s2

s1

x

y

x

y

_

_

1

1

1

Fig. 15. A non-rectangular partitioning to solve Problem 3.2.

(Imagine the border between the two partitions in Figure
14 sliding left or right).

• For the non-rectangular partitioning, the sum of half
perimeters is equal to 2 + x + y, and therefore depends
on x and y, and the sizes of the partitions s1 and s2, and
therefore the ratio between the partitions.

Thus a natural manipulation is to minimize the sum (x+y),
to drive down the sum of half perimeters for the non-
rectangular case. Doing so will not affect the area of the
partitions, as x and y form a rectangle of size s2, and are
free to be changed while keeping the area of s2 (and therefore
the area of s1) constant.

Since (x × y) is a rectangle of fixed area, minimising its
perimeter is proportional to minimising (x + y), and occurs
when the rectangle is a square. Thus Equation 1 becomes

2 + 2×
√
s2 (2)

We can then answer the question: Is the non-rectangular

partitioning’s sum of half perimeters less than that of the
rectangular partitioning? The answer is found by answering

2 + 2×
√
s2 <? 3. (3)

Clearly, Inequality 3 is true for all
√
s2 <

1
2 . This corre-

sponds to s2 < 1
4 , which means that s1 > 3

4 . We can therefore
conclude that when p = 2, and s1

s2
> 3, the non-rectangular

partitioning has a lower sum of half perimeters than that of
the rectangular. When s1

s2
= 3, the sum of half perimeters of

the two partitionings are equal.

In other words as long as the area of the larger partition
is greater than three times the smaller, the non-rectangular
partitioning will result in a lower sum of half perimeters
and therefore a lower volume of communication. We can
summarize with the following:
• For ratios ρ : 1 where ρ ∈ [1, 3) the rectangular

partitioning has a lower total volume of communication.
• For the ratio ρ : 1 where ρ = 3 the rectangular and non-

rectangular partitionings are equivalent in total volume of
communication.

• For ratios ρ : 1 where ρ ∈ (3,∞) the non-rectangular
partitioning has a lower total volume of communication.

This of course depends on the sum of half perimeters Ĉ being
proportional to the total volume of communication (TVC) for
the non-rectangular solution. This will be explored in Section
IV-E. We will then provide a short yet formal proof.

D. Ratio Notation

As in the previous section above, we will be discussing
and utilizing the speed (or computational power) ratio between
two computing entities (processors, clusters, etc.) often in the
coming sections. This ratio will be denoted ρ, where ρ =

def s1
s2

,
where s1 and s2 are the relative speeds or processing power of
the entities s1 and s2. For simplicity, these ratios are always
normalized so that s2 = 1. Therefore the following identities
apply:

in fractional notation, ρ =
s1
s2

=
s1
1

=
ρ

1
⇒ ρ = s1

and in ratio notation, ρ = s1 : s2 = s1 : 1 = ρ : 1 = ρ : s2

At different times it will be more appropriate to use one over
another.

Additionally, because we assume perfect load balancing,
s1 and s2 are proportional to the partition areas assigned to
entities P1 and P2 (or simply just entities 1 and 2) respectively.

E. Optimization

We have seen that for partitioning the unit square into two
partitions, a non-rectangular partitioning can have a lower
sum of half perimeters than a rectangular one, given the ratio
between the two partition areas is ρ : 1 where ρ ∈ (3,∞).

What can be said about the lower bound of the sum of
half perimeters? How close to this lower bound is the non-
rectangular partitioning? In [4] the authors give a lower bound
for the sum of half perimeters Ĉ to be LB in Equation 4

LB = 2×
p∑
i=1

√
si (4)

where p is the number of partitions and si is the area of the ith
partition. This is because the half perimeter of any partition is
at a minimum when that partition is a square.

We then consider the following case. We have p = 2,
s1 = 1 − ε and s2 = ε where ε is some arbitrarily small but
positive number. Any rectangular partitioning will require two
partitions, formed by drawing a line of length 1 (See Figure
14). This will result in a sum of half perimeters, Ĉ = 3,
however LB gets arbitrarily close to 2.

Now we consider the non-rectangular partitioning of Figure
15. As ε → 0, the sum of half perimeters Ĉ → 2 and
LB → 2, which happens to be the half perimeter of the unit
square itself, and therefore obviously optimal. Thus the non-
rectangular partitioning can be optimal.

In [4], the authors make an experimental comparison of
the sum of half perimeters and theoretical lower bound of
the column-based rectangular partitioning discussed in Section

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 18

0 5 10 15 20 25 30 35 40

1.10

1.05

1

Number of Computing Entities

Average Values

Minimum Values

R
at

io
 (

Su
m

 o
f

H
al

f
Pe

ri
m

et
er

s
/ L

ow
er

 B
ou

nd
)

(p)

2

Rectangular Partitioning

Fig. 16. A plot of the average and minimum Ĉ
LB

values for a number
of processors (entities) p from 1 to 40 for the column based rectangular
partitioning of [4]. For each value p, 2,000,000 partition values si are
randomly generated.

II-D. The comparison between Ĉ and LB is made in the
following manner:
• Two curves are generated for a number of processors

(entities) from 1 to 40.
• The first curve reflects the mean value Ĉ

LB for 2,000,000
randomly generated partition areas (si).

• The second curve reflects the minimum value generated
for the same.

Clearly the average values give a good idea of how the
partitioning performs overall, while the minimum value (with
such a large set of randomly generated areas) should reflect
on how optimal the partitioning can be for each number of
processors (entities). (Note that the number of processors is
equal to the number of partitions as there is a one-to-one
mapping of processors to partition areas). Figure 16 shows
the results of these experiments (adopted from [4]).

Figure 16 shows a number of interesting characteristics:
• The average values show:

– By far the worst performance is for p = 2, by a
factor of approximately 2 over that of the second
worst performing case, p = 6.

• The minimum values show:
– “Magic” numbers where the minimum Ĉ

LB values
are at or near 1, indicating optimal or near optimal
solutions. These are numbers where it is theoretically
possible to tile the unit square with a grid of x
squares of size (

√
x×
√
x). Of course these numbers

are the perfect squares (1, 4, 9, 16, 25, 36, ...). The
average results also show better performance near
these numbers.

– By far the worst performance is for p = 2, by a
factor of approximately 5, over that of the second
worst performing case, p = 6. (Note that p = 3 just
out performs p = 6 and is the third worst performing
case, as we will discuss this case in Section V.)

It is important to note that in the case of p = 2, any and all
rectangular partitionings should have the same performance,
as they all result in equivalent partitionings in the form of that
in Figure 14.

5 10 15 20 25 30 35 40

1.10

1.05

1

Number of Computing Entities

Minimum Values

R
at

io
 (

S
um

 o
f H

al
f P

er
im

et
er

s
/ L

ow
er

 B
ou

nd
)

Average Values

(p)

0 2

Non−Rectangular Partitioning

Fig. 17. A plot of the average and minimum Ĉ
LB

values for a number
of processors (entities) p from 1 to 40 except p = 2 using the rectangular
partitioning, and for p = 2, the non-rectangular partitioning. For each value
p, 2,000,000 partition values si are randomly generated.

Figure 17 Shows the same plot as Figure 16 but with the
non-rectangular partitioning data for p = 2. In other words for
p = 2 the non-rectangular partitioning of Figure 15 is used
(with s2 =

√
s2 ×

√
s2) but for all other p, the partitioning

values of Figure 16 have been retained. In addition, for p = 2,
the restriction s1

s2
≥ 3.0 has been added since it is known that

in cases where s1
s2
< 3.0, the rectangular partitioning should

be used instead.
Figure 17 Shows a number of interesting characteristics:
• The average values show

– For the case of p = 2, the average value has dropped
from 1.105 to 1.054, an improvement of almost 49%.

– p = 2 has gone from the worst average value to third
worst, now better than p = 3 and p = 6.

– The worst performing average case is now p = 6.
• The minimum values show

– The worst performing case is now p = 3 instead of
p = 2

– For the case of p = 2 (which was the worst perform-
ing case at 1.061), the performance is now optimal
(actual value 1.000001). This concludes that p need
not be a “magic” number in order for the minimum
ratio to be at (or very very near) 1 (optimal).

It is interesting that for the simple case of p = 2 a non-
rectangular partitioning has out performed a rectangular one
in all but a very small practical range of ratios. One more
glance at Figures 16 and 17 begs the question, can the non-
rectangular partitioning be extended to p > 2?

What has been established, is that in the case of p = 2, a
hybrid partitioning employing any rectangular partitioning for
s1
s2
< 3.0, and using the non-rectangular partitioning discussed

in this section for all others will give the best theoretical
performance known. Further, the only room for improvement
lies in the region s1

s2
< 3.0, as above that ratio the non-

rectangular partitioning provides an optimal solution to the
General Matrix Partitioning Problem (Problem 3.2).

F. Conclusion
This section presented a geometric approach to partitioning

a matrix into two partitions. All rectangle-based partitionings

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 19

reduce to equivalent partitionings when applied to the General
Matrix Partitioning Problem (Problem 3.2), yielding solutions
with sum of half perimeters Ĉ = 3, and an accordingly
proportional total volume of communication. Despite common
belief that a non-rectangular approach would not yield a better
result, and significantly complicate the solution [35], a non-
rectangular solution was presented which does yield better
performance at little-to-no complication. This performance
comes in a lower sum of half perimeters than all rectangular
partitionings provided the ratio between the areas of the
two partitions is greater than 3 : 1. This non-rectangular
solution was shown to be optimal as the sum of half perimeter
approaches the theoretically optimal sum of half perimeters
Ĉ = 2 as the ratio between partition areas grows. A hybrid
algorithm utilizing the non-rectangular algorithm for ratios
≥ 3 : 1, and any rectangular algorithm for ratios < 3 : 1 would
yield better overall results compared to all known algorithms.

Further, this section has laid the foundation for Section IV,
which will show that an architecture requiring a data partition-
ing amongst “only” two computing entities is not a degenerate
case, as with modern scientific computing platforms each
entity/cluster/site/etc. can be of great computational power
locally. This concept is extended to more than two processors
and useful application areas in Sections V and VI, providing
theoretical and experimental proof to show that a partitioning
amongst small numbers of computing entities can be quite
advantageous.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 20

IV. THE SQUARE-CORNER PARTITIONING

This section introduces the “Square-Corner Partitioning”,
whose geometrical version was introduced in Section III. The
Square-Corner Partitioning is a top-level, non-rectangular par-
titioning for matrix matrix multiplication between two clusters
or other computing entities. After communication details and
theoretical performance are examined, experimental results of
simulations using two processors, then experimental results
using two different sets of two clusters are presented. The
Square-Corner Partitioning is compared to rectangular parti-
tionings in both communication and execution times.

The Square-Corner Partitioning is based on Algorithm 3.1,
and accompanying geometrical analysis in Section III. The
solution partitioning is similar to Figure 15. Results of experi-
ments on two clusters correlate well with both the simulations
presented here and theoretical performances. In the case of
two clusters, each of which may have great computational
power, this partitioning proves to be an important asset to
anyone performing large matrix matrix multiplications, or any
problem with a communication schedule similar to MMM.

In Section III a non-rectangular partitioning solving the
General Matrix Partitioning Problem (Problem 3.2) for p = 2
was presented. This partitioning was shown to have a lower
sum of half perimeters (SHP) than any rectangular partitioning
solving the same problem, provided the ratio between the two
clusters is greater than 3 : 1. More specifically:
• For ratios ρ : 1 where ρ ∈ [1, 3) the rectangular

partitioning has a lower total volume of communication.
• For the ratio ρ : 1 where ρ = 3 the rectangular and non-

rectangular partitionings are equivalent in total volume of
communication.

• For ratios ρ : 1 where ρ ∈ (3,∞) the non-rectangular
partitioning has a lower total volume of communication.

This partitioning can be now be more specifically defined as
The Square-Corner Partitioning, described by Algorithm 4.1.

Algorithm 4.1: The Square-Corner Partitioning, a solution
to the General Matrix Partitioning Problem (Problem 3.2) for
p = 2.
• Step 1. Re-index the processing elements Pi in the non-

decreasing order of their speeds, s2 ≤ s1.
• Step 2. Create a square partition of size s2 in any corner

of the matrix to be partitioned.
• Step 3. Map P2 to the square partition of size s2, and

map P1 to the remaining balance of the matrix of size
s1 = N2 − s2, where N is the size of the matrix.

• Step 4. Do the same for all matrices.
As Figure 18 shows, the rectangular Straight Line Partition-

ing always results in a TVC equal to N2, in two communica-
tion steps regardless of the power ratio ρ.

The Square-Corner Partitioning has a TVC equal to Equa-
tion 5,

TVC = 2×N ×
√
s2 (5)

where N is the matrix dimension and
√
s2 ×

√
s2 is the

dimension of Cluster 2’s square partitions, shown in Figure
19.

As we have now formally defined the Square-Corner Parti-
tioning, we will formally, yet simply prove that it has a lower
TVC than the Straight-Line Partitioning for ρ > 3.

Theorem 4.1: For all power ratios ρ greater than 3, the
Square-Corner Partitioning has a lower TVC than that of the
Straight-Line Partitioning, and therefore all known partition-
ings, when p = 2.

Proof:

TV CSCP < TV CSLP

2×N ×
√
s2 < N2

2×N2

√
ρ+ 1

< N2

2 <
√
ρ+ 1

4 < ρ+ 1

3 < ρ Q.E.D

Similar proofs show that for the power ratio ρ = 3, the
Square-Corner TVC is exactly equal to the Straight-Line TVC,
and for ratios ρ < 3, the Square-Corner TVC exceeds that of
the Straight-Line Partitioning.

We can also simply prove that as defined, the Square-Corner
Partitioning minimizes the total volume of communication
against variants of the algorithm. Possible variants include
assigning non-square partitions to Cluster 2. This means
relaxing the

√
s2×
√
s2 square partition to become a rectangle

of width α, height β, and area s2. We wish to minimize the
total volume of communication, which more generally than
Equation 5 can be given by Equation 6.

TVC = α×N + β ×N (6)

With the restraints:

α× β = s2, 0 < α ≤ N, 0 < β ≤ N (7)

Theorem 4.2: The TVC of the Square-Corner Partitioning,
C is minimized only when the Square-Corner Partitioning as-
signs a square partition to the smaller partition area α×β = s2.

Proof: The first derivative of C is set equal to zero and
it is shown that this occurs only when α = β, and therefore
when the partition of area s2 is a square. We then see that the
second derivative of C is always positive and therefore any
other partition will result in an increase in C.

C = α×N + β ×N
C = α×N +

s2
α
×N

dC

dα
= N − s2 ×N

α2

N − s2 ×N
α2

= 0

s2 = α2, ∴ α = β

d2C

dα2
= N + 2× s2 ×N

α3
> 0 Q.E.D

Figure 19 shows the Square-Corner Partitioning and the
necessary data movements required to calculate a matrix

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 21

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

A BC +=

Cluster 2

Cluster 1

N

N

Fig. 18. The Straight-Line Partitioning and communication steps required
to carry out C = A×B.

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

A BC +=

Cluster 1

Cluster 2

N

N
s

s2

2

Fig. 19. The Square-Corner Partitioning and communication steps required
to carry out C = A × B. The square partition is located in a corner of the
matrix.

product C = A × B. Clearly the TVC is dependent on the
size of the square partition and therefore the ratio ρ between
the two partitions. The communication steps follow:

1) Cluster 1 needs to receive the entire square partition of
matrix A from Cluster 2.

2) Cluster 1 needs to receive the entire square partition of
matrix B from Cluster 2.

3) Cluster 2 needs to receive a set of partial rows of matrix
A from Cluster 1.

4) Cluster 2 needs to receive a set of partial columns of
matrix B from Cluster 1.

It will be shown in Section IV-D, based on Figures 18 and
19, that the Square-Corner Partitioning is not a special case
of any Straight-Line Partitioning or vice-versa.

A. Serial Communications

First we will investigate the case where communication be-
tween nodes or clusters is serial—no parallel communication
is allowed to occur. In fact it is this scenario that we examined
in Section III and so far in this section (because it is in this case
that the communication time is proportional to the TVC). This
will not be the case if parallel communications are allowed
(Section IV-B). This serial communication model is viable
and realistic, particularly for grids and other geographically
distributed architectures, as physical distance, other traffic and
cost may force a serial connection between entities. Indeed
for massively distributed projects, such as SETI@home, the
number of links that connect computing entities to servers
is so great that one of them has a good chance of being

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25

T
ot

al
 V

ol
um

e
of

 C
om

m
un

ic
at

io
n

(N
2)

Processor/Cluster Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 20. The TVC for the Square-Corner and Straight-Line Partitionings
with serial communication, in terms of cluster power (partition area) ratio.

serial, and becoming a bottleneck that will limit the whole
communication channel to the performance limitations of that
bottleneck.

1) Straight-Line Partitioning: For the Straight-Line Parti-
tioning, the TVC is always N2, regardless of power ratio, as
shown in Figure 18. To be consistent with three more cases
that will be examined in this section and Section IV-B we will
state this as a limit:

TV CSLP = N2

lim
s2→0

TV CSLP = N2

This can be expressed in terms of ρ as

lim
ρ→∞

TV CSLP = N2 (8)

2) Square-Corner Partitioning: The TVC for the Square-
Corner Partitioning is given by Equation 5. Additionally, we
can see that the Square-Corner Partitioning is optimal if we
look at the limit of Equation 5:

TV CSCP = 2×N ×
√
s2

lim
s2→0

TV CSCP = 0

This can be expressed in terms of ρ as

lim
ρ→∞

TV CSCP = 0 (9)

Figure 20 Shows the Square-Corner Partitioning TVC com-
pared to that of the Straight-Line Partitioning with serial com-
munications for power (partition) ratios ρ = 1 : 1 → 25 : 1.
At a ratio of 3 : 1 the partitionings are equivalent in TVC,
and for ρ = 15 : 1 the Square-Corner Partitioning’s TVC is
one-half that of the Straight-Line Partitioning.

3) Hybrid Square-Corner Partitioning for Serial Commu-
nications: Since for ratios ρ < 3 : 1, the Square-Corner
Partitioning has a greater TVC than that of the Straight-Line
Partitioning, the two can be combined to create a hybrid
algorithm. This Hybrid Square-Corner Partitioning for Serial
Communications (HSCP-SC) is equivalent to the Square-
Corner Partitioning for ρ ≥ 3, and equivalent to the Straight-
Line Partitioning for ρ < 3.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 22

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25

To
ta

l V
ol

um
e

of
 C

om
m

un
ica

tio
n

(N
2)

Processor Power Ratio ρ = (x:1)

Hybrid Square-Corner Partitioning for Serial Communication
Straight-Line Partitioning

Fig. 21. The TVC for the Hybrid Square-Corner for Serial Communications
and Straight-Line Partitionings with serial communication, in terms of cluster
power (partition area) ratio.

Figure 21 shows the TVC of the HSCP-SC compared to
that of the Straight-Line Partitioning.

Since we know that for ρ < 3, the HSCP-SC and SLP are
equivalent by definition, we will not compare the HSCP-SC
and the SLP experimentally, but will compare the SCP to the
SLP experimentally as we have been doing theoretically.

B. Parallel Communications

Next we will investigate the case where communication
between nodes or clusters is parallel. In this case, there are
two communications happening at the same time: Cluster 1
is transmitting to Cluster 2, and Cluster 2 is transmitting to
Cluster 1 as per Figures 18 and 19. This is also a reason-
able model, as many network interconnects do allow parallel
communications, even over large geographic distance, but at
a greater cost than that of serial communication links.

The equations for the total volumes of communication so
far have been expressed in terms of the area of the smaller,
square partition s2. It will be advantageous to express these
in terms of the ratio ρ = s1

s2
= s1 : s2:

ρ =
s1
s2

s2 =
s1
ρ

s2 =
1− s2
ρ

(see Figure 19)

s2 =
1

ρ
− s2

ρ

s2 +
s2
ρ

=
1

ρ
ρ× s2 + s2 = 1

s2 × (ρ+ 1) = 1

s2 =
1

1 + ρ
(10)

1) Straight-Line Partitioning: For the Straight-Line Parti-
tioning, the TVC from Cluster 1 to Cluster 2 (TV CSLP 1→2)
is always greater than that from Cluster 2 to Cluster

1 and therefore dominant (except at a 1:1 ratio where
TV CSLP 1→2 = TV CSLP 2→1 = N2

2). As per Figure 18:

TV CSLP 1→2 = (1− s2)×N2 (11)

TV CSLP 1→2 ∝
(

1− 1

1 + ρ

)
TV CSLP 1→2 ∝

(
ρ

1 + ρ

)
(12)

As with the serial communication case, it can be shown that
the Straight-Line Partitioning is not optimal by examining the
limit of Equation 11:

TV CSLP = (1− s2)×N2

lim
s2→0

TV CSLP = N2

This can be expressed in terms of ρ as

lim
ρ→∞

TV CSLP = N2 (13)

Note that Equation 13 is equal to Equation 8, thus the
Straight-Line Partitioning performs the same with serial and
parallel communications.

2) Square-Corner Partitioning: For the Square-Corner Par-
titioning, again the volume of communication from Cluster 1
to Cluster 2 (TV CSCP 1→2) is greater and therefore dominant
for ρ > 3 : 1. For ρ < 3 : 1, TV CSCP 2→1 is dominant. At
ρ = 3 : 1 both TVC values are equivalent. As per Figure 19,
we can determine:

TV CSCP 1→2 = 2×
√
s2 × (1−

√
s2)×N2 (14)

TV CSCP 1→2 ∝ 2× (
√
s2 − s2)

TV CSCP 1→2 ∝ 2×
(√

1

1 + ρ
− 1

1 + ρ

)
(15)

TV CSCP 2→1 = 2× s2 ×N2

TV CSCP 2→1 ∝ 2× s2

TV CSCP 2→1 ∝
(

2

1 + ρ

)
(16)

Where TV CSCP 1→2 is the total volume of communication
moving from Cluster 1 to Cluster 2 and TV CSCP 2→1 is
the total volume of communication moving from Cluster 2
to Cluster 1.

Therefore the dominant communication for a given ratio ρ
for the Square-Corner Partitioning using parallel communica-
tions is:

max(TV CSCP 1→2, TV CSCP 2→1) =

max

[
2×

(√
1

1 + ρ
− 1

1 + ρ

)
,

(
2

1 + ρ

)]
(17)

Figure 22 shows a plot of Equations 12 and 17. This
illustrates the Straight-Line and Square-Corner Partitionings
with parallel communications for power (partition) ratios ρ =

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 23

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

To
ta

l V
ol

um
e

of
 C

om
m

un
ica

tio
n

(N
2)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 22. The TVC for the dominant communication of the Straight-Line and
Square-Corner Partitionings utilizing parallel communications.

1 : 1 → 25 : 1. Since communications are parallel, only the
dominant communication is taken into account. For the SCP
this is achieved with the max function in Equation 17.

The discontinuity in the TVC of the Square-Corner Parti-
tioning at ρ = 3 is due to the transition from TV CSCP 2→1

being dominant for ρ < 3 to TV CSCP 1→2 being dominant
for ρ > 3. (TV CSCP 1→2 = TV CSCP 2→1 when ρ = 3).
If we included the non-dominant terms, the curves for both
TV CSCP 2→1 and TV CSCP 1→2 are continuous (See Figure
24) .

We can also show that for parallel communications the
Square-Corner Partitioning is optimal, as is the case for serial
communications by examining the limit of Equation 14:

TV CSCP = 2×
√
s2 × (1−

√
s2)×N2

lim
s2→0

TV CSCP = 0

This can be expressed in terms of ρ as

lim
ρ→∞

TV CSCP = 0 (18)

3) Hybrid Square-Corner Partitioning for Parallel Commu-
nications: As Figure 22 shows, for ratios less than ρ = 2 : 1,
the Square-Corner Partitioning has a greater TVC than that of
the Straight-Line Partitioning when parallel communications
are utilized. Thus the two can be combined to create a hybrid
algorithm. This Hybrid Square-Corner Partitioning for Parallel
Communications (HSCP-PC) is equivalent to the Square-
Corner Partitioning for ρ ≥ 2, and equivalent to the Straight-
Line Partitioning for ρ < 2. The HSCP-PC will give the best
performance of all known algorithms regardless of ρ. Figure
23 shows the HSCP’s TVC compared to that of the Straight-
Line Partitioning.

The TVC of the HSCP-PC is given by:

min

[
ρ

1 + ρ
,max

[
2×

(√
1

1 + ρ
− 1

1 + ρ

)
,

(
2

1 + ρ

)]]
(19)

As Equation 19 and Figure 24 show, the HSCP-PC is a
combination of three functions, as summarized in Table I.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

To
ta

l V
ol

um
e

of
 C

om
m

un
ica

tio
n

(N
2)

Processor Power Ratio ρ = (x:1)

Hybrid Square-Corner Partitioning for Parallel Communication
Straight-Line Partitioning

Fig. 23. The TVC for the Hybrid Square-Corner for Parallel Communications
and Straight-Line Partitionings with parallel communication, in terms of
cluster power (partition area) ratio.

ρ Algorithm Function

1 ≤ ρ < 2 SLP
(

ρ
1+ρ

)
2 ≤ ρ < 3 SCPs2→s1

(
2

1+ρ

)
3 ≤ ρ SCPs1→s2 2×

(√
1

1+ρ
− 1

1+ρ

)
TABLE I

THE HSCP-PC ALGORITHM IN TERMS OF ρ. THE ALGORITHM IS
COMPOSED OF THE SLP AND DIFFERENT COMPONENTS OF THE SCP
DEPENDING ON THE VALUE OF ρ. SCPx→y IS THE TVC OF THE SCP

FROM PARTITION x TO PARTITION y.

Figure 24 shows the HSCP-PC’s TVC compared to that of
the Straight-Line Partitioning and the two components of the
Square-Corner Partitioning.

Since we know that for ρ < 2, the HSCP-PC and SLP are
equivalent by definition, we will not compare the HSCP-SC
and the SLP experimentally, but will compare the SCP to the
SLP experimentally as we have been doing theoretically.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

To
ta

l V
ol

um
e

of
 C

om
m

un
ica

tio
n

(N
2)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning s1 → s2Square-Corner Partitioning s2 → s1
Straight-Line Partitioning

Hybrid Square-Corner Partitioning for Parallel Communication

Fig. 24. Parallel Communications: The TVC for SCPs1→s2 , SCPs2→s1 ,
SLP and HSCP-PC, where SCPx→y is the TVC of the SCP from partition x
to partition y.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 24

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����

����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����

����
����
����
����

A BC +=

Cluster 2

Cluster 1

Fig. 25. A partitioning similar to the Square-Corner Partitioning and
communication steps required to carry out C = A×B. The square partition
is located adjacent to one of the sides of the matrix.

C. Choosing a Corner For the Square Partition

We choose a corner for the position of the square partition
for several reasons of convenience as follows. The location
does not affect the TVC. Placing the square partition in the
corner position of the matrix:

1) Minimizes the number of communication steps necessary,
and reduces the complexity of the communication sched-
ule discussed in Section IV-D.

2) Allows the use of the SHP metric as proportional to the
TVC as discussed in Section IV-E.
• In showing that the SHP is proportional to the TVC

for the Square-Corner Partitioning (as it is for the
rectangular, or Straight-Line Partitioning) we come
up with a new metric, the total number of row and
column interrupts, I . This is explored in Section
IV-F.

3) Maximizes an area of the matrix which can allow for the
overlapping of communication and computation which
will be discussed in Section IV-G.

4) Maximizes the potential size of multiple partitions as will
be discussed in Sections V and VII.

D. Minimizing the Number of Communication Steps

Placing the square partition in the corner of the matrix
minimizes the number of communication steps necessary to
calculate C = A×B. Figure 19 shows that the Square-Corner
Partitioning requires a total of four communication steps.
Figure 25 shows a partitioning similar to the Square-Corner
Partitioning and the necessary data movements required to
calculate a matrix product C = A×B with the square partition
adjacent to one of the sides of the matrix.

As Figure 25 shows, the number of communication steps in
this case is five. Just as in the case where the square partition
is located in one of the corners of the matrix, both square
partitions and a number of partial rows and partial columns
need to be communicated.

Figure 26 shows a partitioning similar to the Square-Corner
Partitioning and the necessary data movements required to
calculate a matrix product C = A×B with the square partition
in the center of the matrix, not adjacent to any sides. As Figure
26 shows, the number of communication steps is six. Just as
in the case where the square partition is located in one of the

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������

����������
����������
����������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����������
����������
����������

����������
����������
����������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����������
����������
����������

����������
����������
����������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����������
����������
����������

����������
����������
����������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����������
����������
����������

����������
����������
����������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����

����
����
����

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������

����������
����������
����������

A BC +=

Cluster 2

Cluster 1

Fig. 26. A partitioning similar to the Square-Corner Partitioning and
communication steps required to carry out C = A×B. The square partition
is not adjacent to any sides of the matrix.

corners of the matrix, both square partitions and a number of
partial rows and partial columns need to be communicated.

A very important point to note is that the Square-Corner
Partitioning requires at least four communication steps to
compute C = A × B. All Straight-Line Partitionings require
only two. Thus the algorithms are distinct and one is not a
special case of the other.

E. Sum of Half Perimeters - A Metric

In Section III we used the sum of half perimeters as a metric
which is proportional to the total volume of communication.
This is common practice for rectangular partitionings but
demands closer inspection for the non-rectangular case.

First let us use two methods to determine the sum of half
perimeters for the non-rectangular (Square-Corner) solution on
the unit-square.
• Add the entire perimeter of the partitions s1 and s2 and

divide the sum by two. Equation 2 gives us Ĉ = 2 + 2×√
s2.

• [5] provides the second way: It is the length of the lines
drawn to make the partition(s) plus 2. This also results
in Ĉ = 2 + 2×

√
2.

Thus the unit square SHP for the Square-Corner Partitioning
is (2+2×√s2). For a real matrix of size N , the SHP is given
by Equation 4.2.

Ĉ = 2×N + 2×
√
s2 (20)

As we have seen in Equations 5 and 20, the TVC and SHP
for the Square-Corner Partitioning are expressed in terms of√
s2. We can in turn define

√
s2 in terms of the cluster power

ratio, ρ in Equation 21. As always we normalize this ratio so
that the power of the slower cluster is equal to 1, so a ratio
of ρ is understood to be a ratio of ρ : 1.

√
s2 =

N√
ρ+ 1

(21)

To study the proportionality of the SHP and TVC rela-
tionship, Table 4.1 lists some actual SHP/TVC ratios for the
Square-Corner Partitioning, along with the partitionings in
Figures 25 (square partition adjacent to one side) and 26
(square adjacent to no sides). The value of

√
s2, and therefore

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 25

SHP/TVC√
s2 Square-Corner Figure 25 Figure 26

0.1 11.0 11.5 12.0
0.25 5.0 5.5 6.0
0.5 3.0 3.5 4.0
0.75 2.66 2.833 3.33
0.9 2.11 2.611 3.11

TABLE II
SHP/TVC VALUES FOR THE SQUARE-CORNER PARTITIONING AND TWO

SQUARE-CORNER-LIKE PARTITIONINGS (FIGURES 25 AND 26),√
s2 ∈ (0.1, 0.25, 0.5, 0.75, 0.9), ON THE UNIT SQUARE.

Number of Partitions SHP/TVC

2 3
4 2
9 3/2
16 4/3
25 5/4
36 6/5

TABLE III
SHP/TVC VALUES THE STRAIGHT-LINE PARTITIONING FOR SIX

DIFFERENT NUMBERS OF PARTITIONS, p ∈ (2, 4, 9, 16, 25, 36), ON THE
UNIT SQUARE.

the ratio between the two partitions, is varied. Note that we
are working on the unit square.

It is desirable to make a meaningful comparison of the
proportionality of the SHP/TVC ratio for the Square-Corner
and “Square-Corner-Like” Partitionings and the SHP/TVC
ratio for the Straight-Line Partitioning. Initially this proves
troublesome, as varying the ratio between only two parti-
tionings for the Straight-Line Partitioning will yield the same
ratio regardless of SHP and TVC values, as both are constant.
The SHP is always 3, and the TVC is always 1 on the unit
square. Table III lists values for the Straight-Line Partitioning
SHP/TVC ratios for a varying number of partitions. To keep
calculations simple, each partition is given an equal area, and
the partition numbers are kept to perfect squares.

Interestingly, plotting the SHP and TVC while varying
√
s2

for the Square-Corner and Square-Corner-Like Partitionings
(keeping p constant), but varying the number of partitions p
for the Straight-Line Partitioning, we can see their relative
relationships. This is shown in Figure 27.

Figure 27 shows that the Square-Corner Partitioning and
Straight-Line Partitionings have equivalent SHP/TVC ratios.
Those for the other two Square-Corner-Like Partitionings are
also linear, and have the same intercepts as the other lines,
only their slope varies.

The intercept for all lines appears to be (0, 2). This cor-
responds to a TVC of 0 (obviously optimal), and a SHP
of 2, also optimal (The SHP of the unit-square itself is
2). This however is not the case if we inspect the region
below SHP = 3 with greater detail. It is seen that once the
SHP reaches 3, the Straight-Line Partitioning cannot proceed
towards the optimal (0, 2). This is because the SHP cannot
be less than 3, and therefore the TVC can never be below
1. However the Square-Corner Partitioning carries no such
restriction and does approach, in the limit SHP → 0, the

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4

Su
m

 o
f H

al
f P

er
im

et
er

s

Total Volume of Communication

Figure 5.5
Figure 5.4

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 27. A plot of the SHP vs. TVC values for Square-Corner and
Square-Corner-Like Partitionings (Figures 25 and 26), and the Straight-Line
Partitioning on the unit square. For the Square-Corner and Square-Corner-
Like Partitionings the value of

√
s2 ∈ (0.1, 0.25, 0.5, 0.75, 0.9) is varied.

For the Straight-Line Partitioning the number of partitions p ∈ (2, 4, 9) is
varied.

optimal value of TVC = 0. Interestingly, the other two
Square-Like Partitionings also approach the optimal value of
TVC = 0.

F. A New TVC Metric - Row and Column Interrupts

In Section IV-D we saw that for each communication step a
number of partial rows and columns had to be communicated.
In fact, all communications make up partial rows and columns.
Although once all communications have completed it is entire
rows and columns that have been communicated in aggregate.
This holds for the Straight-Line Partitioning as well. This leads
us to conclude that a more general metric, proportional to
the TVC, is the number of rows and columns interrupted by
partitions boundaries.

For the Square-Corner and Square-Corner-Like Partition-
ings, the number of rows and columns interrupted is

√
s2 rows

and
√
s2 columns for the square partition, and the same for

the polygonal partition for a total of 4 × √s2. The TVC is
2×N ×√s2. For the Straight-Line Partitioning, the number
of rows interrupted is N for the first partition and N for the
second for a total of 2 × N . The TVC is N2. From this the
following observations can be made:
• For the Square-Corner and Square-Corner-Like Partition-

ings,
TVC
I

=
2×N ×√s2

4×√s2
=
N

2
• For the Straight-Line Partitioning,

TVC
I

=
N2

2×N
=
N

2
where I is the total number of rows and columns interrupted
by each partition in each partitioning, given by Equation 22.

I =

p∑
i=1

(ri + ci) (22)

where p is the number of partitions, r is the number of rows
interrupted by partition i, and c is the number of columns
interrupted by partition i.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 26

A B

C D

+

+ = Bounding Rectangles

= Polygon Boundaries

Fig. 28. Four polygonal partitionings seen so far, along with their bounding
rectangles. Partitions A and B have a TVC proportional to the SHP. C and
D do not. All partitions have a TVC proportional to their I value, the total
number of row and column interrupts.

We conclude, but do not prove, that Equation 22 is a more
general metric than the SHP for determining the relative TVC
of matrix partitionings.

This is due to the fact that the SHP fails to be proportional
to the TVC for polygons whose perimeters are not equal to that
of a bounding rectangle. In Figure 25 the partition owned by
Cluster 1 is a polygon which falls into this category. In Figure
26 the partition owned by Cluster 1 is not even polygonal, but
a polygon with a “hole” cut in it. Nonetheless if one considers
the perimeter of the hole to contribute to the SHP as we did
in Section IV-E, the SHP does behave linearly and converge
on the optimal TVC. Thus the SHP does seem appropriate as
a metric, however the sum of row and column interrupts, I , is
again more appropriate, as it matches exactly the I value of
the other Square-Corner and Square-Corner-Like Partitionings,
when their TVC values are equivalent.

The non-rectangular partition in the Square-Corner Parti-
tioning works perfectly with both the SHP and I metrics, be-
cause the SHP is equal to the SHP of the partition’s bounding
rectangle. (Also note that the same is true for all rectangular
partitions.) Figure 28 shows the polygons so far investigated.
A is the non-rectangular partition from the Square-Corner
Partitioning, B is a rectangular partitioning from the Straight-
Line Partitioning. C and D are from the Square-Corner-Like
Partitionings. The TVC of A and B is proportional to the
SHP while that of C and D are not. At the same time all
partitionings A,B,C and D have an I value proportional to
their TVC.

G. Overlapping Communication and Computation

The Square-Corner Partitioning has another advantage over
the Straight-Line Partitioning. There is always a part of the
product matrix C which can be immediately calculated. This
is shown in Figure 29 as the hatched area. The hatched areas
of matrices A and B are those required to calculate area C
with no communication. Cluster 1 owns these areas from the
outset. In Section V this will be shown to greatly reduce

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�������
�������
�������
�������

�������
�������
�������
�����������������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

A B+=C

Cluster 1

Cluster 2

Fig. 29. The Square-Corner Partitioning showing the area (hatched) of Cluster
1’s C matrix which is immediately calculable. No communication is necessary
to calculate this area. This is possible because Cluster 1 already owns the areas
of A and B necessary to calculate C (also hatched).

execution times. Placing the square partition in one corner of
the matrix maximizes the area of this immediately calculable
sub-partition, in the corner opposite. We explore this further
in Sections V-D and V-F.

H. HCL Cluster Simulations

To experimentally verify algorithm 4.1, the Square-Corner
Partitioning, we implemented it and the Straight-Line Par-
titioning in Open-MPI [36]. The experiments were carried
out on two identical machines on the HCL Cluster (hcl03
and hcl04). This was done so we could focus solely on the
partitioning method without worrying about any contributions
made by architectural differences. Local matrix computations
utilize ATLAS [37]. The machines were connected with a
switch allowing the bandwidth between the nodes to be
specified, up to 1Gb/s.

1) Serial Communications: Since the HCL switches allow
parallel communications, we simulated a serial communication
link in code. We do this by forcing all communications from
Processor 1 to Processor 2 to complete before the commu-
nications going from Processor 2 to Processor 1 commence.
This is done using MPI_Barrier() calls. Both partitionings
carry out all communications first, then all computations. Thus
preliminarily there is no communication/computation overlap.
All times are averaged over five runs.

The ratio of speeds between the two nodes was varied by
slowing down the CPU of one node relative to the other using
a CPU limiting program as proposed in [2]. This program
supervises a specified processes and using the /proc pseudo-
filesystem, forces the process to sleep when it has used more
than a specified fraction of CPU time. The process is then
woken when enough idle CPU time has elapsed for the process
to resume. Sampled frequently enough, this can provide a fine
level of control over the fraction of CPU time used by the
process. Comparison of the run-times of each node confirmed
that this method results in the desired ratios well within 2%.

a) Comparison of Communication Times: We ran matrix
matrix multiplications using the Square-Corner Partitioning
and the Straight-Line Partitioning for power ratios ranging
from 1 : 1 to 1 : 25 and for bandwidth values ranging from
50Mb/s to 1Gb/s. In all cases other than ratios of 1 : 1, 1 : 2,

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 27

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Processor/Cluster Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 30. Average communication times for the Square-Corner and Straight-
Line Partitionings using serial communications. Network bandwidth is
100Mb/s, N = 4, 500.

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Processor/Cluster Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 31. Average communication times for the Square-Corner and Straight-
Line Partitionings using serial communications. Network bandwidth is
500Mb/s, N = 4, 500.

and 1 : 3, the total communication time for the Square-Corner
Partitioning was less than that of the Straight-Line Partitioning.

Figure 30 shows the communication times for the Square-
Corner and Straight-Line Partitionings for ratios 1 : 1− 1 : 25
and a network bandwidth of 100Mb/s. The shape of the curves
in this figure reflect the TVC relationship between the Square-
Corner and Straight-Line Partitionings as theoretically shown
in Figure 20.

Figure 31 shows the communication times for the Square-
Corner and Straight-Line Partitionings for ratios 1 : 1− 1 : 25
and a network bandwidth of 500Mb/s. Again the experimental
results match the theoretical predictions.

The most important feature of all communication plots is
that there is the predicted “crossover” between the Square-
Corner Partitioning and Straight-Line Partitioning at a ratio
of ρ = 3 : 1, and for all greater ratios the Square-Corner
Partitioning has a lower TVC and therefore communication
time. In fact the gap between the two partitionings continues
to widen with increasing ratio, because lim

ρ→∞
TV CSLP = N2

(Equation 8), and lim
ρ→∞

TV CSCP = 0 (Equation 9).

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 5 10 15 20 25

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning (Dominant Communication)
Straight-Line Partitioning

Fig. 32. Average communication times for the Square-Corner and Straight-
Line Partitionings using serial communications. Network bandwidth is 1Gb/s,
N = 4, 500.

b) Comparison of Total Execution Times: The objective
of the Square-Corner Partitioning is to reduce the inter-cluster
communication time, resulting in a lower total execution
time compared to all other partitionings when the number of
partitions, p = 2. Since the total execution time is dependent
on communication and computation time, any savings in
total execution time will be dependent on how dominant
communication time is in the overall execution time. It can
be seen comparing the communication and execution times
that the reduction in communication times directly impacts
the execution times.

Figures 33, 34 and 35 show the total execution times for
the Square-Corner and Straight-Line Partitionings for ratios
1 : 1− 1 : 25 and network bandwidths of 100Mb/s, 500Mb/s
and 1Gb/s respectively, using serial communications. The
crossover at ρ = 3 : 1 which was predicted theoretically
and observed experimentally in the communication times is
also present in the execution times. For all ratios ρ > 3 : 1,
the Square-Corner Partitioning out performs the Straight-Line
Partitioning.

As bandwidth increases, the ratios where both the Square-
Corner and Straight-Line Partitionings are faster than the
sequential time (performing the multiplication on the fastest
processor only) increase. For the Square-Corner Partitioning,
this ratio increases from approximately 17 : 1 to 23 : 1 as the
bandwidth increases from 100Mb/s to 1Gb/s.

2) Parallel Communications: In this section we explore the
performance of the Square-Corner Partitioning when parallel
communications are utilized. All experimental parameters and
techniques are the same as Section IV-H1. The only difference
is a modified communication schedule, which is described in
the following section.

a) Comparison of Communication Times: We ran matrix
matrix multiplications using the Square-Corner Partitioning
and the Straight-Line Partitioning for power ratios ranging
from 1 : 1 to 1 : 25 and for bandwidth values ranging from
50Mb/s to 1Gb/s. In all cases where ρ > 2 : 1 The total
communication time for the Square-Corner Partitioning was
less than that of the Straight-Line Partitioning, as predicted

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 28

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 130

 135

 0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fastest Processor

Fig. 33. Average execution times for the Square-Corner and Straight-Line
Partitionings using serial communications. Network bandwidth is 100Mb/s,
N = 4, 500.

 70

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fastest Processor

Fig. 34. Average execution times for the Square-Corner and Straight-Line
Partitionings using serial communications. Network bandwidth is 500Mb/s,
N = 4, 500.

 65

 70

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

 0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fastest Processor

Fig. 35. Average execution times for the Square-Corner and Straight-Line
Partitionings using serial communications. Network bandwidth is 1Gb/s, N =
4, 500.

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning (Dominant Communication)
Straight-Line Partitioning

Fig. 36. Average communication times for the Square-Corner and Straight-
Line Partitionings using parallel communications. Network bandwidth is
100Mb/s, N = 4, 500.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 5 10 15 20 25

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning (Dominant Communication)
Straight-Line Partitioning

Fig. 37. Average communication times for the Square-Corner and Straight-
Line Partitionings using parallel communications. Network bandwidth is
500Mb/s, N = 4, 500.

by theory.
All communications are carried out before computations

begin. Non-Blocking MPI_ISend() and MPI_IRecv()
communications are used, followed by MPI_Wait() state-
ments. This is done to give control of the communication
scheduling to the network layer allowing Ethernet parallelism.
The only MPI_Barrier is between the communication and
computation code segments.

Figures 36, 37, and 38 show the communication times for
the Square-Corner and Straight-Line Partitionings for ratios
1 : 1− 1 : 25 and network bandwidths of 100Mb/s, 500Mb/s,
and 1Gb/s respectively. The shape of the curves in these figures
reflect the TVC relationship between the Square-Corner and
Straight-Line Partitionings as theoretically shown in Figure 20.
Note that with parallel communications this results in a lower
communication time when ρ > 2 : 1.

b) Comparison of Total Execution Times: The objective
of the Square-Corner Partitioning is to reduce the inter-cluster
communication time, resulting in a lower total execution
time compared to all other partitionings when the number of
partitions, p = 2. Since the total execution time is dependent
on communication and computation time, any savings in

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 29

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning (Dominant Communication)
Straight-Line Partitioning

Fig. 38. Average communication times for the Square-Corner and Straight-
Line Partitionings using parallel communications. Network bandwidth is
1Gb/s, N = 4, 500.

 70

 80

 90

 100

 110

 120

 130

 140

 0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fastest Processor

Fig. 39. Average execution times for the Square-Corner and Straight-Line
Partitionings using parallel communications. Network bandwidth is 100Mb/s,
N = 4, 500.

total execution time will be dependent on how dominant
communication time is in the overall execution time. It can
be seen comparing the communication and execution times
that the reduction in communication times directly impacts
the execution times.

Figures 39, 40 and 41 show the total execution times for
the Square-Corner and Straight-Line Partitionings for ratios
1 : 1− 1 : 25 and network bandwidths of 100Mb/s, 500Mb/s
and 1Gb/s respectively. These figures also show the execution
time for the fastest processor executing the multiplication time
sequentially on the fastest processor.

As bandwidth increases, the ratio where both the Square-
Corner and Straight-Line Partitionings are faster than the
sequential time (performing the multiplication on the fastest
processor only) increases. For the Square-Corner Partitioning,
this ratio increases from approximately 19 : 1 to 22 : 1 as the
bandwidth increases from 100Mb/s to 1Gb/s.

I. HCL Cluster Experiments

This section presents results of MPI matrix matrix multi-
plication experiments on a small two cluster configuration of

 60

 70

 80

 90

 100

 110

 120

 130

 0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fastest Processor

Fig. 40. Average execution times for the Square-Corner and Straight-Line
Partitionings using parallel communications. Network bandwidth is 500Mb/s,
N = 4, 500.

 60

 70

 80

 90

 100

 110

 120

 0 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fastest Processor

Fig. 41. Average execution times for the Square-Corner and Straight-Line
Partitionings using parallel communications. Network bandwidth is 1Gb/s,
N = 4, 500.

the HCL Cluster. Six machines (hcl03 - hcl08) were used,
connected through two switches utilizing the SFP connection
between them as shown in Figure 42. Cluster 1 (hcl03, hcl04,
hcl05) all have their CPU speeds restricted as in Section IV-H.
Thus we have a two cluster architecture which should be well
modelled by the simulations in Section IV-H.

1) Comparison of Communication Times: The communi-
cation times for this architecture were very close to the
simulation using two machines in Section IV-H. Overall the
communication times were slightly higher, most likely due to
the increased number of machines communicating. Only the
bandwidth of the SFP connection was varied as this is the only
link between the two clusters.

Figures 43, 44, and 45 show the communication times for
the Square-Corner and Straight-Line Partitionings for ratios
1 : 1 to 1 : 15 and a network bandwidths of 100Mb/s,
500Mb/s and 1Gb/s respectively. Parallel communications are
utilized in all experiments. As with two processors and parallel
communications, the Square-Corner Partitioning has a lower
communication time for all ρ > 2 : 1. N = 4,500 for all
experiments.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 30

hcl05 (eth0)

hcl06 (eth1)

hcl08 (eth1)

Switch 2

Switch 1

SFP

hcl07 (eth1)

hcl04 (eth0)

hcl03 (eth0)

Fig. 42. A two cluster configuration of the HCL Cluster. By bringing up NIC1
and bringing down NIC2 on hcl03 - hcl05, and the opposite for hcl06 - hcl08,
and enabling the SFP connection between the switches, two homogeneous
connected clusters of three nodes each are formed.

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning (Dominant Communication)
Straight-Line Partitioning

Fig. 43. Average communication times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communication. Network bandwidth is
100Mb/s, N = 4, 500.

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2 4 6 8 10 12 14 16

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning (Dominant Communication)
Straight-Line Partitioning

Fig. 44. Average communication times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communication. Network bandwidth is
500Mb/s, N = 4, 500.

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning (Dominant Communication)
Straight-Line Partitioning

Fig. 45. Average communication times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communication. Network bandwidth is
1Gb/s, N = 4, 500.

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(s
)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fastest Processor

Fig. 46. Average execution times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communication. Network bandwidth is
100Mb/s, N = 4, 500.

2) Comparison of Total Execution Times: The overall ex-
ecution times were again directly influenced by the commu-
nication times. Execution times were lower than simulations
as expected, due to a three-fold increase in computational
power through increased parallelism. It is seen that the increase
in bandwidth and corresponding reduction in communication
times is the largest factor in reducing the execution times.

Figures 46, 47, and 48 show the total execution times for
the Square-Corner and Straight-Line Partitionings for ratios
1 : 1 to 1 : 15 and network bandwidths of 100Mb/s, 500Mb/s
and 1Gb/s respectively. As with two processors and parallel
communications, the Square-Corner Partitioning has a lower
execution time for all ρ > 2 : 1.

J. Grid’5000 Experiments

To investigate the scalability of the Square-Corner Parti-
tioning we utilized Grid’5000 (See Section I-B2). Grid’5000
is located across nine sites in France and has 1,529 nodes from
Altix, Bull, Carri, Dell, HP, IBM and SUN. There is a total of
2,890 processors with a total of 5,946 cores from both AMD
and Intel.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 31

 22

 24

 26

 28

 30

 32

 34

 36

 38

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(s
)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fastest Processor

Fig. 47. Average execution times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communication. Network bandwidth is
500Mb/s, N = 4, 500.

 22

 24

 26

 28

 30

 32

 34

 36

 38

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(s
)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fastest Processor

Fig. 48. Average execution times for the Square-Corner and Straight-Line
Partitionings utilizing parallel communication. Network bandwidth is 1Gb/s,
N = 4, 500.

In this section we used two clusters of machines at the
Bordeaux site. The first are IBM x4355 dual-processor nodes
with AMD Opteron 2218 2.6GHz Dual Core Processors with
2MB L2 Cache and 800MHz Front Side Bus. Each node has
4GB of RAM (2GB per processor, 1GB per core). The second
are IBM eServer 325 dual-processor nodes with AMD Opteron
248 2.2GHz single core processors with 1MB L2 Cache. Each
node has 2GB of Ram (1GB per processor).

The problem size is N = 15, 000.
1) Comparison of Communication Times: All communi-

cations were 1GB/s Ethernet. Parallel communications are
utilized. It can be seen that an effect of keeping the overall
computational power constant while increasing the relative
power ratio served to flatten out some of the communication
curves, particularly those for the Straight-Line Partitioning,
where there is a constant amount of communication regardless
of the power ratio.

Figure 49 shows the communication times for ratios 1 : 1
to 1 : 8.

2) Comparison of Total Execution Times: Power ratios
were varied from 1 : 1 to 1 : 8 by varying the number of CPUs
in each cluster while trying to maintain a relatively constant

 45

 50

 55

 60

 65

 70

 75

 1 2 3 4 5 6 7 8

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 49. Average communication times for the Square-Corner and Straight-
Line Partitionings utilizing parallel communications. Network bandwidth is
1Gb/s, N = 15, 000.

 132

 134

 136

 138

 140

 142

 144

 146

 1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(s
)

Processor Power Ratio ρ = (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 50. Average execution times for the Square-Corner and Straight-Line
Partitionings utilizing parallel communications. Network bandwidth is 1Gb/s,
N = 15, 000.

total power. This represents a departure from our simulation
and experiment results in Sections IV-H and IV-I, where the
overall computational power was not kept constant. All local
computations utilized ATLAS.

It can be seen that the reduction in communication time
directly impacts the execution time. The expected crossover
at power ratio 2:1 is present and for greater power ratios, the
Square-Corner Partitioning has a lower execution time.

Both the Square-Corner and Straight-Line Partitionings re-
sulted in lower execution times than the problem being solved
on just the fastest cluster, which ran in 198s.

K. Conclusion

This section presented a new data partitioning algorithm, the
Square-Corner Partitioning, for matrix matrix multiplication
on two heterogeneous interconnected clusters. Compared to
more general partitioning algorithms which result in sim-
ple “Straight-Line” rectangular partitions on a two-cluster
architecture, this new partitioning is proven to reduce the
total volume of inter-cluster communication when the power
ratio of the two clusters is greater than 3 : 1 when serial

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 32

communications are utilized, and greater than 2 : 1 when
parallel communications are utilized. This results in a lower
execution time for architectures with these ratios.

This partitioning algorithm can be utilized as the top-
level partitioning of a hierarchal algorithm that is to multiply
matrices across more than two connected clusters. A tree-like
network could deploy this partitioning at each level of the
network, allowing individual clusters to handle their computa-
tions in any manner locally. When serial communications are
utilised, a hybrid algorithm utilizing this new Square-Corner
Partitioning for power ratios equal to or greater than 3 : 1,
and the existing Straight-Line Partitioning for ratios of less
than 3 : 1 guarantees that the total volume of communication
will be equal to or less than previously existing algorithms
for all ratios. When parallel communications are utilised, a
hybrid algorithm utilizing this new Square-Corner Partitioning
for power ratios equal to or greater than 2 : 1, and the
existing Straight-Line Partitioning for ratios of less than 2 : 1
guarantees that the total volume of communication will be
equal to or less than previously existing algorithms for all
ratios.

The Square-Corner Partitioning has several advantages over
other Straight-Line Partitionings including the possibility of
overlapping communication and computation. This is theoret-
ically and experimentally explored in Section V.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 33

1

2 3

1

2 3

Star Fully Connected

Fig. 51. Star and Fully Connected topologies for three clusters.

V. THE SQUARE-CORNER PARTITIONING ON THREE
CLUSTERS

In this section the Square-Corner Partitioning is extended
from an architecture of two clusters to three. We do this
because the move from two to three clusters represents a
theoretical hurdle, and the three cluster topology is much
closer to a n cluster topology than two. A large part of this
is due to the fact that a three cluster system introduces a
new degree of freedom, in the availability of more than one
interconnection topology. Thus we are sacrificing theoretical
generality to explore deeper with experimental analysis. We
will see in Section VII that generalizing to four or more
clusters is a qualitative extension of the three cluster case.

The cases where the Square-Corner Partitioning has a
lower total volume of communication than the Straight-Line
Partitioning are explored theoretically then experimentally.
Topological limitations are also discussed. As in the two
cluster case we will start our experiments with three pro-
cessor simulations before presenting experimental results on
Grid’5000. Experimental results correlate well with theory and
simulation.

In this research we model three clusters using three pro-
cessors because a three processor network provides a con-
trollable and tunable environment whose structure is similar
to three clusters. In the case of connected clusters, local
communications are often an order of magnitude faster than
the interconnecting link. Due to physical distance this link is
often serialized or of some limited parallelism but depending
on architecture parallel links are not ruled out nor considered
exotic. Similarly, with three processors local communications
(within processor-local registers and memory) are typically
fast compared to the inter-processor connection speed. Using
an Ethernet switch with a configurable bandwidth allows us
to model many different scenarios.

As the case of three clusters brings up a new degree of
freedom that was not found in the two cluster case, namely
network topology, we explore the impact of this on the
partitioning’s effectiveness. In the case of three clusters there
are “Star” and “Fully Connected” topologies now available
(see Figure 51). We will also explore the case where com-
munications and computations can be overlapped resulting in
lower overall execution times.

To our knowledge no research has been conducted to opti-
mize data partitioning techniques for the specific architecture
of three connected nodes. The most related work is [4],
which introduced a partitioning for matrix matrix multipli-
cation designed for any number of nodes including three.
This partitioning exclusively utilizes rectangular partitions,
organized in columns, with each rectangle being proportional

3s

s2

h2

h1

q

N s_
2s_= Ns1 3

2

Fig. 52. A Straight-Line Partitioning for three clusters.

in area to the speed of the node which is to calculate that
partition. This Straight-Line Partitioning in the case of three
clusters results in a partitioning as shown in Figure 52.

The Square-Corner Partitioning differs in that the matrix is
not partitioned into rectangles. We create three partitions, the
first being a square located in one corner of the matrix, the
second being a square in the diagonally opposite corner, and
the third is polygonal, comprised of the balance of the matrix,
as seen in Figure 53. On a star topology where the fastest node
is the middle node, this partitioning always results in a lower
total volume of communication (see Section V-A). The benefit
of a more efficient communication schedule further reduces
communication time, which in turn drives down total execution
time. On a fully connected topology this minimizes the total
volume of communication between clusters for a defined range
of power ratios (see Section V-B).

This partitioning also allows for a sub-partition of the
matrix product to be calculated without any communications
needed. When dealing with hardware that has a dedicated
communication sub-system, this can further reduce execution
time.

As with the two cluster case in Section IV the total
volume of communication of the Square-Corner Partitioning
approaches the theoretical lower bound as the power ratio
between the nodes grows, unlike existing partitionings which
have a TVC bounded by a constant or a function that does not
approach the theoretical lower bound.

As discussed in Section III the TVC for a rectangular
partitioning is proportional to the sum of the half-perimeters
Ĉ of all partitions, given by Equation 23 (for a unit square)

Ĉ =

p∑
i=1

(hi + wi) (23)

where p is the number of nodes, and hi and wi are the height
and width of the rectangle assigned to node i, respectively.

Since the perimeter of any rectangle enclosing a given area
is minimized when that rectangle is a square, there is a natural
lower bound LB for Ĉ given by Equation 24, where ai is the
area of the partition belonging to node i.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 34

s

s

s3

2

s3

N = N s2
2_ _

3ss1

2
Fig. 53. The Square-Corner Partitioning for three clusters.

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

C A B= +

Cluster 1

Cluster 2

Cluster 3

b c

f

a d

e

Fig. 54. A two-dimensional Straight-Line Partitioning and data movements
required to carry out C = A×B on three heterogeneous nodes or clusters.

LB = 2×
p∑
i=1

√
ai (24)

As in the case for two clusters, the lower bound cannot
always be met by the Straight-Line Partitioning. However
as Figure 53 shows, as s2 and s3 approach 0, the SHP of
the Square-Corner Partitioning approaches 2, which is the
perimeter of the unit square itself, and therefore optimal.
Figure 54 shows the Straight-Line Partitioning and necessary
data movements to carry out the matrix matrix multiplication
C = A×B.

Although the general rectangular partitioning problem is
NP-complete it is easy to show that for the simple case of
three partitions the best possible rectangular partitioning is of
the form shown in Figure 52 (where s2 and s3 are the smaller
partitions), as this arrangement minimizes q in Equation 25,
the only variable quantity in the TVC of the Straight-Line
Partitioning for a matrix size N .

N2 +N × q (25)

In order to calculate its partition of C, Cluster 1 needs to
receive the respective partitions of A from Clusters 2 and 3,
Cluster 2 needs to receive Cluster 3’s partition of B, and part
of Cluster 1’s partition of A, and Cluster 3 needs to receive
Cluster 2’s partition of B and the remaining part of Cluster
1’s partition of A, as shown in Figure 54.

If we define the area of Cluster 2’s partition to be s2 and
Cluster 3’s partition to be s3, Equation 25 can be expressed
as Equation 26.

N2 + s2 + s3 (26)

When dealing with a star topology where Cluster 1 (the
fastest cluster) is the middle topologically, the communications
between Clusters 2 and 3 must go through Cluster 1. This
has the effect of doubling the total volume of communication
between Clusters 2 and 3, as all communications between this
pair must first be sent to and received by Cluster 1 before the
data can be sent on to the recipient node. This raises the TVC
to Equation 27.

N2 + 2× (s2 + s3) (27)

The Square-Corner Partitioning differs from the Straight-
Line (rectangular) partitioning described above by relaxing the
restriction that all partitions must be rectangular. We extend the
two node partitioning presented in Section IV by creating two
square partitions in diagonally opposite corners of the matrix.
Since the total volume of communication is proportional to
the sum of half perimeters of the partitions, it is easy to show
that the sum of half perimeters is at a minimum when the
two slower nodes are assigned square partitions. Therefore,
the optimal Square-Corner Partitioning assigns the balance of
the matrix to the fastest node. Since a square has the smallest
perimeter of any rectangle of a given area we do not consider
non-square rectangular corner partitions. Figure 55 shows the
partitioning scheme used by the Square-Corner Partitioning
and the necessary data movements to calculate C = A×B.

The total volume of communication of the Square-Corner
Partitioning is given by Equation 28, where s2 and s3 are the
areas assigned to Clusters 2 and 3 (the two slower clusters).

2×N × (
√
s2 +

√
s3) (28)

As Figure 55 shows, Clusters 2 and 3 do not communicate
at all, thus the TVC is equal to Equation 28 for both the fully
connected and star topology where Cluster 1 is the middle
Cluster topologically.

Other similar (but non-Square-Corner) partitioning methods
were also investigated. Examples of two partitionings explored
are shown in Figure 56. In the Square-Corner Partitioning, di-
agonally opposite corners are chosen to minimize the number
of communication steps necessary as well as for the reasons
discussed in Section IV-C. As shown in Figure 55 the number
of communication steps is eight. Placing the squares in corners
that are not diagonally opposite as in Figure 56.A requires ten
communication steps provided ε1 6= ε2. If ε1 = ε2 the number

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 35

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

C = A + B

Cluster 1

Cluster 2

Cluster 3

a b c d e f g h

Fig. 55. The Square-Corner Partitioning and data movements necessary to
calculate C = A×B.

ε ε
ε

ε
1

1 22

A B

Fig. 56. Examples of non-Square-Corner Partitionings investigated.

of steps remains at eight. The total volume of communication
is still equal to Equation 28 regardless. If the partitions are
nested as in Figure 56.B, the number of communication steps
is 12 and a higher TVC results. All other (more exotic)
partitioning methods investigated resulted in an increased TVC
also.

In the Square-Corner Partitioning, the square partitions
cannot overlap. This imposes the following restriction on the
relative speeds of the clusters:

s2
s1
× s3
s1
≤ 1

4
(29)

where s1 + s2 + s3 = 1 and s1 is the relative speed of the
cluster owning the balance of the matrix (the fastest cluster).
A consequence of this is that the possible cluster ratios are
somewhat limited. Another way of visualizing this is by noting
that the areas of s2 and s3 cannot overlap. This eliminates
certain ratios such as 1 : 1 : 1.

A. Comparison of Communications on a Star Topology

Since in the Square-Corner Partitioning Clusters 2 and
3 do not have to communicate at all, the total volume of
communication on a star where Cluster 1 is the middle cluster
remains equal to Equation 28. The Straight-Line Partitioning

has a TVC equal to Equation 27. In terms of cluster speeds, the
Square-Corner Partitioning has a lower TVC when Inequality
30 is satisfied.

(
√
s2 +

√
s3) < 1.5− s1 (30)

where s1 : s2 : s3 is the ratio representing the node speeds,
normalized so that s1 + s2 + s3 = 1, and subject to the
restriction of Inequality 29.

In order to see when the Square-Corner Partitioning has a
lower total volume of communication than the Straight-Line
partitioning, we examined the surface

z = (
√
s3 +

√
s2)− 1.5 + s1 (31)

which represents the Straight-Line Partitioning’s total vol-
ume of communication subtracted from that of the Square-
Corner Partitioning. Since z < 0 for all positive values of
s1, s2, and s3, the Square-Corner Partitioning always results
in a lower total volume of communication.

Additionally, the fact that Cluster 1 must now relay data
from Cluster 2 to Cluster 3 and vice-versa introduces a section
of the communication schedule that is necessarily serialized in
the Straight-Line Partitioning. The Square-Corner Partitioning
has no such section and can therefore exploit in full any
existing network parallelism.

For the Straight-Line Partitioning, the total volume of
communication becomes dependent on which cluster is the
middle node topologically, and in turn on the values of s2 and
s3. These three topologies and their required communications
are shown in Figure 57. In the figure, the following are the
volumes of each communication:

a + b = N2 − s2 − s3
c = e = s2
d = f = s3

The resultant TVCs are shown in Table IV.
In Table IV the TVC for cases where Clusters 2 and 3 are

the center nodes topologically are presented as inequalities
because it is impossible to separate a and b in a general
manner. Only their sum (a + b = N2 − s2 − s3) can be
quantified (see Figure 54). Therefore where (a + 2 × b) and
(2 × a + b) appear, only (a + b) is used, thus giving a
conservative value for the TVC in these cases.

Note that in Table IV, the TVC calculated for the case where
Cluster 1 is the center cluster is equivalent to Equation 27, the
TVC calculated in Section V.

For the Square-Corner Partitioning, the total volume of
communication is always less when the most powerful cluster
(Cluster 1) is the center node. This is shown in Figure 58.
Additionally, when Cluster 1 is not the center node, the
communication schedule gets more complicated and one side
of the network becomes busier than the other. In the figure,
the following are the volumes of each communication:

a = h =
√
s2 × (N −√s2)

e,= d =
√
s3 × (N −√s3)

c = g = s2
b = f = s3,

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 36

1
c

d

b
3 2

f

a

c

ea

3

f

b

d

e f

a

e

c

21

f

1 2
c

d

b

a

d

e

3
b

Fig. 57. The three possible star topologies for three clusters using the
Straight-Line Partitioning and associated data movements. Labels refer to data
movements in Figure 54. Volumes of communication are shown in Table IV.

Center Cluster TVC

1 a + b + c + d + 2 × e + 2 × f
= N2 + 2× s2 + 2× s3

2 a + 2 × b + c + 2 × d + e + f
> N2 + s2 + 2× s3

3 2 × a + b + 2 × c + d + e + f
> N2 + 2× s2 + s3

TABLE IV
TVC VALUES FOR THE STRAIGHT-LINE PARTITIONING ON THE THREE

POSSIBLE STAR TOPOLOGIES SHOWN IN FIGURE 57. LETTERS A - F REFER
TO LABELS IN FIGURE 57.

The resultant TVCs are shown in Table V.

Note that in Table V, the TVC calculated for the case
where Cluster 1 is the center cluster is equivalent to Equation
28, the TVC calculated in Section V.

Center Cluster TVC

1 a + b + c + d + e + f + g + h
= 2×N × (

√
s2 +

√
s3)

2 2 × a + b + 2 × c + d + e + f + 2 × g + 2 × h
= 2×N × (2×√s2 +

√
s3)

3 a + 2 × b + c + 2 × d + 2 × e + 2 × f + g + h
= 2×N × (

√
s2 + 2×√s3)

TABLE V
TVC VALUES FOR THE SQUARE-CORNER PARTITIONING ON THE THREE

POSSIBLE STAR TOPOLOGIES SHOWN IN FIGURE 58. LETTERS A - H REFER
TO LABELS IN FIGURE 58.

a

h

g

c
3 2 1

b

e

d

f g
c

a
h

1
b

e

f g
c

a
h

f

b

d

32
e

d

13 2
a

h

c

g f

b

d

e

Fig. 58. The three possible star topologies for three clusters using the
Square-Corner Partitioning and associated data movements. Labels refer to
data movements in Figure 55. Volumes of communication are shown in Table
V.

B. Comparison of Communications of a Fully Connected
Topology

On a fully connected topology the Square-Corner Partition-
ing has a total volume of communication equal to Equation
28 and the Straight-Line partitioning has a total volume of
communication equal to Equation 26. In terms of cluster
speeds the Square-Corner Partitioning results in a lower total
volume of communication when

(
√
s2 +

√
s3) < 1− s1

2
(32)

is satisfied, where again s1 : s2 : s3 is the ratio representing
the cluster speeds, normalized so that s1 + s2 + s3 = 1, and
subject to the restriction of Inequality 29.

This inequality shows that the total volume of communi-
cation is dependent on the values of s2 and s3 (s2 can be
expressed as 1−s2−s3). To investigate what values of s2 and
s3 result in a lower total volume of communication compared
to the rectangular partitioning, we plotted the surface

z = (
√
s2 +

√
s3)− 1 +

s1
2

(33)

which is negative when the Square-Corner Partitioning’s
total volume of communication is less than that of the Straight-
Line Partitioning. Figure 59 shows this surface, and Figure 60
shows a contour plot of this surface at z = 0. In Figure 60
only the values of z < 0 are shown. It is for these values that
the TVC of the Square-Corner Partitioning is less than that of
the Straight-Line Partitioning.

C. Comparison with the State-Of-The-Art and the Lower
Bound

In Section II-D we summarized the work of [4] for the
specific case of two nodes or clusters. The authors present

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 37

Fig. 59. The surface defined by Equation 33. The Square-Corner Partitioning
has a lower TVC for z < 0.

Fig. 60. A contour plot of the surface defined by Equation 33 at z = 0.
For simplicity, s2 = s3, but this is not a restriction of the Square-Corner
Partitioning in general.

an algorithm to find an optimal rectangular partitioning with
the restriction that the rectangles are arranged in columns. For
three nodes, this algorithm results in a partitioning similar to
Figure 52, with three rectangles proportional in area to the
relative powers of the nodes which own them. For the unit
square, the sum of half-perimeters Ĉ which is proportional to
the total volume of communication was given by Equation 23,
and in the case of three nodes is:

Ĉ =

p∑
i=1

(hi + wi) = 3 + q (34)

where 0 < q < 1.
The lower bound of the sum of half perimeters LB is given

by Equation 24, and for the case of three nodes is:

LB = 2×
p∑
i=1

√
si = 2× (

√
s1 +

√
s2 +

√
s3) (35)

where si is the area of the partition belonging to node i.
In the case of three nodes, the Square-Corner Partitioning

has a sum of half perimeters equal to Equation 36:

Ĉ = 2 +
√
s2 +

√
s3. (36)

and therefore
lim

s2+s3→0
Ĉ = 2 (37)

which is equal to the lower bound that cannot be met by
the Straight-Line Partitioning.

To compare the Square-Corner sum of half-perimeters with
that of the Straight-Line Partitioning and the lower bound, we
adopted the same approach as in [4]. We generated 2,000,000
random values for the partition areas s2, s3 and s1 = 1−s2−
s3, and calculated values for the sum of half-perimeters Ĉ and
the lower bound LB. Since we already know that the total
volume of communication for the Square-Corner Partitioning
(on a fully connected network) is greater for the cases where
Equation 33 is positive, we restrict the random areas s1, s2,
and s3 accordingly.

The average sum of half-perimeter to lower bound ratio
for the rectangular partitioning is 1.128, while that of the
Square-Corner Partitioning is 1.079. Considering that 1.0 is the
optimum value, this is an improvement of 38%. The minimum
value for the sum of half-perimeter to lower bound ratio
for the rectangular partitioning is 1.0595, while that of the
Square-Corner Partitioning is 1.0001, an improvement of well
over 99%. This also shows that the Square-Corner Partitioning
does approach the lower bound which cannot be met by the
rectangular partitioning.

In generating 2,000,000 random areas, there are bound to be
many that have very large ratios, making them computationally
unrealistic. Surely nobody would use two entities in parallel if
one of them is slower than the other by an order of hundreds
or thousands or greater. We therefore imposed the tighter
but more realistic restriction of smax/smin ≤ 100 . Even
with these much tighter restrictions, the average sum of half-
perimeter to lower bound ratio for the rectangular partitioning
is 1.104 while that of Square-Corner Partitioning is 1.062, an
improvement of 40%. The minimum is improved from 1.059
to 1.008, an improvement of 86%.

D. Overlapping Communications and Computations

The other primary benefit of the Square-Corner Partitioning
is overlapping communications and computations. As seen
in Figure 55, and in more detail Figure 61, there is a sub-
partition C1 of Cluster 1’s C partition which is immediately
calculable—no communications are necessary to compute the
product of this sub-partition. On an architecture which has
a dedicated communications sub-system this quality can be
exploited to overlap some communications and computations.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 38

= A
+

N

C

C

C

A B1

2

2

1

ε

ε

1

1

2

C B

Fig. 61. Cluster 1’s partition is (C1 ∪ C2 ∪ C3). The sub-partition C1 =
A1 × B1 is immediately calculable—no communications are necessary to
compute its product.

Calculating

Calculating Calculating
Partition

C2

Partition Partition
Calculating

Time =

end

I II

III IV V

ε ε1 2

Cluster 1 Cluster 3

Clusters 1,2,3
Cluster 1

Partition
Communicating

Cluster 2

C1

0

Fig. 62. Overlapping Communication and Computation from an execution-
time point of view.

Figure 62 shows a schematic of the overlapping of com-
munication and computation from an execution time point of
view. As the areas C2, X , and Y (in Figure 61) are calculated
to be proportional to the speed of the nodes owning them,
it is expected that steps III , IV , and V will finish their
computations at the same time. The same is not true for steps
I and II , as they represent unrelated tasks.

A solution exists which would minimize the overall execu-
tion time but this would alter the approach of the Square-
Corner Partitioning. Thus we formulate the total execution
time as texe = max(I, II) +max(III, IV, V)

E. Topological Limitations

It would be incomplete not to note that on three cluster
topologies the Square-Corner Partitioning has some limita-
tions.

1) On a star topology, the areas of s2 and s3 cannot overlap.
This restricts the possible power ratios eliminating some
ratios such as 1:1:1 (see Figure 63). The closest to 1 : 1 :
1 that the Square-Corner Partitioning can get is 2 : 1 : 1,
(s2 = s3 = s1

2). This occurs when the corners of s2
and s3 “meet” (but do not overlap) in the middle of the
matrix.

2) On a star topology, the center cluster or node must be the
fastest (s1). The reasons for this are discussed in Section
V-A.

3) On a fully connected topology the ratios where the
Square-Corner Partitioning out performs the Straight-Line
Partitioning are limited (see Figure 60). When s2 = s3
these ratios account for about 20% of possible ratios. This
figure would change when s2 6= s3, but it gives a good
indication of this limitation.

N

2
N
3

=3s

2
N
6

=

2
N
3

=2s
2

N
6

=1As

s1B

Fig. 63. Demonstration that the Square-Corner Partitioning for three clusters
with a 1:1:1 ratio is not possible, as this ratio forces s2 and s3 to overlap,
which is not allowed by definition. s1 = s1A + s1B.

4) Optimizing the overlapping of communication and com-
putation could prove difficult and would be platform
dependent, unlike other aspects of the Square-Corner
Partitioning.

F. HCL Cluster Simulations

To experimentally verify this new partitioning, we imple-
mented matrix multiplications utilizing the optimal Square-
Corner Partitioning and the Straight-Line (rectangular) Parti-
tioning in Open-MPI [36]. Local matrix multiplications uti-
lize ATLAS [37]. Experiments were carried out on three
identical machines to eliminate contributions of architectural
differences. The machines were connected with a full duplex
Ethernet switch that allows the bandwidth between the nodes
to be finely controlled.

The ratio of speeds between the three nodes were varied
by slowing down CPUs when required using a CPU limit-
ing program as proposed in [2]. This program supervises a
specified processes and using the /proc pseudo-filesystem,
forces the process to sleep when it has used more than a
specified fraction of CPU time. The process is then woken
when enough idle CPU time has elapsed for the process to
resume. Sampled frequently enough, this provides a fine level
of control over the CPU speed. Comparison of the run-times
of each node confirmed that this method results in the desired
ratios to within 2%.

For simplicity we present results where the speeds of the
slower nodes (s2 and s3) are equal. We varied this relative
value from 5 to 25, where s1 = 100 − s2 − s3. Network
bandwidth is 100Mb/s, and N = 5, 000.

Figure 64 shows the communication times for the Square-
Corner and Straight-Line Partitionings on a star topology. The
Square-Corner Partitioning has a lower communication time
than the Straight-Line Partitioning in all cases. On average
the Square-Corner Partitioning results in a reduction in com-
munication time of approximately 40%.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 39

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 5 10 15 20 25

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Relative Speed of S2, S3

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 64. Communication times for the Square-Corner and Straight-Line
Partitionings on a star topology. Relative speeds s1 + s2 + s3 = 100.

 80

 90

 100

 110

 120

 130

 140

 150

 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
)

Relative Speed of S2, S3

Square-Corner Partitioning
Straight-Line Partitioning

Square-Corner Partitioning With Overlapping

Fig. 65. Execution times for the Square-Corner, Square-Corner with
Overlapping and Straight-Line Partitionings on the star topology. Relative
speeds s1 + s2 + s3 = 100.

A plot of the communication volumes agrees well with
Figure 64 with one exception. The Square-Corner and Straight-
Line communication volumes converge as s2 and s3 → 25.
The reason that the communication times do not converge is
due to the necessarily sequential component of the Straight-
Line Partitioning’s communication schedule. This component
can not make use of network advantages such as Ethernet’s
full duplex. Experiments “illegally” altering the rectangular
partitioning’s communication schedule (by de-serializing nec-
essarily serial communications) confirm this.

Figure 65 shows a plot of the execution times for the
Square-Corner and Straight-Line Partitionings on the star
topology. For the Square-Corner Partitioning two values are
plotted, the execution time obtained with no overlapping of
communication and computation, and the values obtained with
overlapping. It is seen that with no overlapping (only taking
into account the communication differences) the execution
time for the Square-Corner Partitioning is on average 14%
less than that of the Straight-Line, and that the reduction in
communication times seen in Figure 64 directly influence the
execution times.

The introduction of overlapping communication and com-

 24

 26

 28

 30

 32

 34

 36

 38

 5 10 15 20 25

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Relative Speed of S2, S3

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 66. Communication times for the Square-Corner and Straight-Line
Partitionings on a fully connected topology. Relative speeds s1 + s2 + s3 =
100.

munications significantly influences the performance of the
Square-Corner Partitioning. For a ratio of 90 : 5 : 5 it is 38%
faster than the rectangular partitioning. As the ratio approaches
50 : 25 : 25, the amount of overlap possible approaches zero,
and the execution times of the Square-Corner Partitioning with
and without overlap converge.

Figure 66 shows the communication times for the fully
connected topology. A notable aspect is that the Straight-
Line Partitioning’s communication times decrease despite the
fact that it is dealing with increasingly higher communication
volumes. The reason for this is that the total volume of
communication for this partitioning increases much slower
than that of both the Straight-Line Partitioning on the star and
the Square-Corner Partitioning. It increases so much slower
that the increased benefit of more computational parallelism
(as s2 and s3 get closer to s1) outweighs the higher communi-
cation burden. Still, for ratios more heterogeneous than about
80 : 10 : 10, the Square-Corner Partitioning has a lower total
volume of communication, and therefore lower communication
times.

Figure 67 shows the overall execution times for the Square-
Corner and Straight-Line Partitionings on a fully connected
topology. Again the Square-Corner partitioning is shown with
and without overlapping. Again, without overlapping the exe-
cution times are directly affected by the communication times.
For ratios more heterogeneous than about 80 : 10 : 10,
the Square-Corner Partitioning out performs the Straight-Line.
The introduction of overlapping again significantly influences
the performance of the Square-Corner Partitioning. For a ratio
of 90 : 5 : 5 the Square-Corner Partitioning is 30% faster
that the rectangular. Additionally, the range of ratios where
the Square-Corner Partitioning is faster than the rectangular
is broadened from about 80 : 10 : 10 to about 60 : 20 : 20.
Similar results were seen at other bandwidths, values of N ,
and power ratios, including where s2 6= s3.

G. Grid’5000 Experiments

To experiment with the Square-Corner Partitioning on a
large scale, geographically distributed scientific computing

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 40

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
)

Relative Speed of s2, s3

Square-Corner Partitioning
Straight-Line Partitioning

Square-Corner Partitioning with Overlapping

Fig. 67. Execution times for the Square-Corner, Square-Corner with
Overlapping and Straight-Line Partitionings on a fully connected topology.
Relative speeds s1 + s2 + s3 = 100.

platform we chose three sites on Grid’5000, arranged in a
star. Actually it is not the physical topology but the fact
that the Square-Corner Partitioning forces Clusters 2 and 3
to communicate through Cluster 1 that “creates” the star
topology.

We chose the sites Orsay, Rennes, and Sophia. Orsay was
chosen as the center cluster (Cluster 1) as it has the greatest
overall power. The desired power ratios were achieved by
varying the number of CPUs and cores used at each site. It
was not always possible to achieve perfect ratios but they
were achieved within a few percent. To determine relative
power ratios, test code consisting of serial matrix matrix
multiplications were carried out on each type of machine.

Figure 68 shows the communication times for the Square-
Corner and Straight-Line Partitionings. Both curves tend to-
wards higher communication times with higher ratios (and
therefore increased parallelism). This is attributed to the in-
crease in the TVC with increased ratios. Instability in the
results could be due to shared communication links between
sites. In addition, we noticed that in a large multi-user envi-
ronment, network traffic serves to affect the communication of
each partitioning without discrimination, unlike in simulations
where only one user is allowed to fully exploit or fully saturate
one communication link. In the latter scenario it is clear that
the partitioning with a higher TVC will saturate a link before
one with a lower TVC.

Figure 69 shows the corresponding execution times. As the
power ratio between clusters increases, so does parallelism.
It seems that the links between sites are fast enough for
the increased parallelism to decrease overall execution time
despite a higher TVC. The inter-site bandwidth is 10Gb/s,
however this does not take into account links internal to each
site running at different speeds which do represent a possible
bottleneck.

In all cases the Square-Corner Partitioning had a lower
TVC, lower communication time, and lower execution time
than the Straight-Line Partitioning.

 85

 90

 95

 100

 105

 110

 115

 120

 125

 5 10 15 20 25

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Relative Speed of s2, s3

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 68. Communication times for the Square-Corner and Rectangular
Partitionings on a star topology. Relative speeds s1 + s2 + s3 = 100.

 125

 130

 135

 140

 145

 150

 155

 160

 165

 170

 175

 180

 5 10 15 20 25

E
xe

cu
tio

n
T

im
e

(s
)

Relative Speed of s2, s3

Square-Corner Partitioning
Straight-Line Partitioning

Square-Corner Partitioning with Overlapping

Fig. 69. Execution times for the Square-Corner, Square-Corner with Over-
lapping and Straight-Line Partitionings on a star topology. Relative speeds
s1 + s2 + s3 = 100.

H. Conclusion

We have extended the Square-Corner Partitioning from the
two cluster scenario in Section IV to three interconnected
clusters. This partitioning has two advantages over existing
partitionings. First it reduces communication time due to a
lower total volume of communication and a more efficient
communication schedule. The total volume of communication
is shown to approach the known lower bound unlike existing
partitionings. Second it allows for the overlapping of commu-
nication and computation.

To determine the viability of this partitioning we modeled
the three cluster topology with three processors performing
matrix matrix multiplications. Compared to more general parti-
tionings which result in simple Straight-Line Partitionings, the
Square-Corner Partitioning is shown to reduce the total volume
of communication in all cases for the star topology and in most
cases for a fully connected topology. We experimentally show
that this directly translates to lower communication times. In
the case of the star topology, we show average reductions in
communication time of about 40%.

Further experimentation shows that this reduction in com-
munication time directly translates to a reduction in the overall

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 41

execution time, aided by a more efficient communication
schedule. Overlapping communication and computation brings
further benefit, in both reducing the execution times signif-
icantly, and broadening the ratio range where the Square-
Corner Partitioning out performs the Straight-Line Partitioning
on a fully connected topology. MPI experiments demonstrate
reductions in execution times of up to 38%.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 42

VI. APPLICATIONS: MAX-PLUS ALGEBRA AND DISCRETE
EVENT SIMULATION ON PARALLEL HIERARCHAL

HETEROGENEOUS PLATFORMS

In this section we demonstrate possible areas of application
for the Square-Corner Partitioning and the theoretical results
of this report. We do this by exploring computing max-plus
algebra operations and discrete event simulations on parallel
hierarchal heterogeneous platforms. When performing such
tasks on heterogeneous platforms parameters such as the total
volume of communication and the top-level data partitioning
strategy must be carefully taken into account. Choice of the
partitioning strategy is shown to greatly affect the overall
performance of these applications due to different volumes of
inter-partition communication that various strategies impart on
these operations. Max-plus algebra is regularly used in discrete
event simulations and many other important computational
applications thus warranting the exploration of and improve-
ment upon the running times of basic max-plus operations
on parallel platforms which are inherently hierarchal and
heterogeneous in nature. The main goal of this section is to
present benefits waiting to be exploited by the use of max-
plus algebra operations on these platforms and thus speeding
up more complex and quite common computational topic areas
such as discrete event simulation.

Here we present results of running fundamental max-plus al-
gebra (MPA) operations and discrete event simulations (DES)
on parallel hierarchal heterogeneous platforms. The top-level
data partitioning strategy is shown to greatly affect the overall
performance of these applications due to different volumes of
inter-partition communication that various strategies impart on
these operations. The Square-Corner Partitioning in particular
is shown to reduce the execution times of these operations
more than other, more traditional strategies.

Max-plus algebra is a relatively new field of mathematics
which grew from the advent of tropical geometry in the
early 1980s and has since been shown to have many diverse
application areas. MPA is (along with min-plus algebra) a
sub-category of tropical algebra. MPA obeys most laws of
basic algebra with the operations of addition (a + b) and
multiplication (c × d) replaced by the operations max(a, b)
and addition (c+ d) respectively. Min-plus algebra is similar,
but with the maximum operation replaced with a minimum
operation.

Discrete event simulation is an extremely expansive area
of continuing and intense research which may broadly be
characterised as a collection of techniques and methods which
when applied to the study of discrete-event dynamical systems
generate sequences which characterize system behavior. This
includes modeling concepts for abstracting essential features
of a system into a set of precedence and mathematical re-
lationships, which can be used to describe the system and
more importantly for system design, to predict behavior,
performance, and drawbacks/bottlenecks. DES is used to de-
sign and model a great number of systems including travel
timetables, operating systems, communication networks, au-
tonomous guided vehicles, CPUs and other complex systems.
There are many approaches to designing DES including Petri

nets, alphabet based approaches, perturbation methods, control
theoretic techniques and expert systems design. Recently MPA
and other techniques involving both logical and algebraic com-
ponents have shown to be capable of simplifying simulations
while maintaining the desired outputs [38]. One such method
is explored later in this section.

The Square-Corner Partitioning (Section IV) is a top-level
partitioning method for parallel hierarchal heterogeneous com-
puting which when applied to problems such as matrix matrix
multiplication (MMM) and all linear algebra kernels reducible
to MMM, optimally reduces the total volume of communica-
tion (TVC) between computing entities (processors, clusters,
etc.) when the power ratios between entities meet certain, yet
numerous and very common ratios. This partitioning also has
other benefits including simpler communication schedules and
the possibility of overlapping communication and computation
[9], [10]. As this section demonstrates the SCP can extend
these benefits to many application areas.

A. Max-Plus Algebra

Max-plus algebra is a relatively new field in mathematics,
dating back approximately 30 years. It has since been shown
to have several application areas such as discrete event simula-
tion, dynamic programming, finite dimensional linear algebra,
modeling communication networks, operating systems, com-
binatorial optimization, solving systems of linear equations,
biological sequence comparisons and even problems such as
crop rotation [38]–[42]. In many scientific and computational
applications the structure of MPA matrix multiplication is an
important aspect [43]. Additionally, higher powers of MPA
matrices are of significant interest and necessary in many
application areas [38], [44].

MPA is based on replacing the “normal” algebraic addition
operation with a binary max function, and the “normal”
multiplication operation with addition. Formally, if we define
ε = −∞, e = 0, and denote Rmax to be the set R∪{ε}, then
for elements a, b ∈ Rmax, the operations ⊕ and ⊗ are defined
respectively by the following:

a⊕ b =
def

max(a, b) and a⊗ b =
def

a+ b (38)

Therefore, a ⊕ ε = max(ε, a) = a and a ⊗ ε = ε + a = ε.
We can now formally define max-plus algebra as

Rmax = (Rmax,⊕,⊗, ε, e) (39)

The basic algebraic rules of max-plus algebra are:
• Associativity

(A⊕B)⊕ C = A⊕ (B ⊕ C)
(A⊗B)⊗ C = A⊗ (B ⊗ C)

• Commutativity
A⊕B = B ⊕A

• Distributivity
(A⊕B)⊗ C = A⊗ C ⊕B ⊗ C

In general the ⊗ operation has precedence over the ⊕
operation.

MPA matrices are denoted Rm×nmax , where m and n are the
matrix dimensions. For the MPA matrices A ∈ Rm×nmax and,

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 43

B ∈ Rn×pmax the matrix product A ⊗ B is the same as in
normal linear algebra, but following the operation substitutions
in Definitions 38. That is every “+” operation is replaced with
a ⊕ operation, and every “×” (or “·”) operation is replaced
with a ⊗ operation. From this, matrix powers are straight-
forward, and represented A⊗k for the kth power of A. As
max-plus matrix matrix multiplication and max-plus matrix
powers are integral parts of many applications of MPA we
further discuss this in Section VI-E.

B. Discrete Event Simulation

Discrete event simulation is a very broad and well-studied
field and therefore the purpose of this section is to acquaint
the reader with the specific technique utilized in this section.
Briefly, DES is a collection of techniques and methods which
when applied to the study of a discrete-event dynamical
system generates sequences which characterize the system
behavior. This includes modeling concepts for abstracting
essential features of the system into a set of precedence and
mathematical relationships, which can be used to describe the
system and more importantly for design, and to predict its
behavior, performance, and drawbacks/bottlenecks. For more
see any good DES text such as [45].

As most DES algorithms are computationally intensive, ef-
forts to parallelize them are numerous. The complexity of most
practical DES algorithms however poses numerous obstacles
in effective and efficient parallelization. Amongst these are
synchronization and timing inconsistencies, synchronous vs.
asynchronous simulation, deadlock avoidance and detection,
conservative vs. optimistic simulation, recovery strategies, and
memory management to name a few [46].

In Section VI-F we present results of the parallelization of a
DES modeling technique which although as presented in [42]
is sequential, lends itself to parallelization due to a computa-
tionally intensive algorithmic core which can be efficiently
ported to hierarchal heterogeneous parallel platforms. This
core is very similar to a max-plus matrix matrix multiplication,
but using logical ’and’ and ’or’ operations instead of max-
plus operations. We employ this technique—called the Matrix
Discrete Event Model (MDEM)—using MPI and utilizing the
SCP [9], [10], for the core routine.

C. The Matrix Discrete Event Model

The design, simulation, and analysis of large-scale, com-
plex systems using existing DES techniques such as Petri
nets, alphabet-based approaches, perturbation methods, control
theoretic techniques, and expert systems design are often
difficult to implement and are very labor and time intensive.
The MDEM is a hybrid system with logical and algebraic
components that seeks to make these processes more effi-
cient. Although the examples in [42] focus on manufacturing
systems (see Figure 70), the formulation is also applicable
to many DES situations such as travel timetables, operat-
ing systems, communication networks, autonomous guided
vehicles, operating systems, and many others. Clearly the
number of degrees of freedom, state possibilities, and general

Fig. 70. An MDEM workcell. From [42].

complexity of such systems often result in simulations with
several thousands (or more) event components.

The MDEM approach is a rule-based model described by
four equations: the Model State Equation, Start Equation,
Resource Release Equation, and the Product Output Equation:

Matrix Discrete Event Model State Equation:

x = Fv × vc + Fr × rc + Fu × u+ FD × vD (40)

Start Equation:
vs = Sv × x (41)

Resource Release Equation:

rs = Sr × x (42)

Product Output Equation:

y = Sy × x (43)

Each of these equations are logical, only using or, and, and
negation operations. Additionally, all vectors and matrices in
these equations are binary. For instance, the vector which is
the output of the start equation contains a ‘1’ for each job
which is to be started at the given state of the simulation, and
a ‘0’ otherwise.

The simulation itself is carried out by first calculating initial
conditions from the description of the system. The core of
the simulation is carried out by the successive calculation of
‘firing vectors’ which carry the simulation to the next state.
This amounts to the repeated calculation of an equation which
has the form of a matrix matrix multiplication except that since
the approach of the MDEM technique is hybrid—having both
algebraic and logical components—the algebraic multiplica-
tion and addition operations are replaced with logical ‘or’ and
‘and’ operations respectively. It is this step that constitutes the
bulk of the calculation time for the MDEM technique as all
other calculations only need to be carried out once.

D. MPI Experiments

In this section we present results of performing MPA matrix
matrix multiplications and an MDEM discrete event simulation
utilizing both the Square-Corner Partitioning and the Straight-
Line Partitioning. Hardware setup is similar to that in Section
IV-J, only differing in power ratios.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 44

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 1 2 3 4 5 6

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Cluster Power Ratio (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 71. Comparison of the total communication times for the square-corner
and straight-line partitionings for power ratios ranging from 1 : 1 − 6 : 1.
Max-Plus MMM, N = 7, 000.

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(s
)

Cluster Power Ratio (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 72. Comparison of the total execution times for the square-corner and
straight-line partitionings for power ratios ranging from 1 : 1 − 6 : 1. Max-
Plus MMM, N = 7, 000.

E. Max-Plus MMM Using the Square-Corner Partitioning

As outlined in Section VI-A we experimented with perform-
ing a MPA MMM using C and MPI. We used a two cluster
heterogeneous platform with power ratios between clusters
ranging from 1 : 1 to 6 : 1. For all experiments we use
double precision and N = 7, 000. The local interconnect was
2Gb/s Infiniband and the inter-cluster interconnect was 1Gb/s
Ethernet. Figure 71 shows the communication times for both
the Square-Corner and Straight-Line Partitionings.

Communications are serialized in code. As expected the
SCP does not show improvement in communication time until
the power ratio is 3 : 1, as this is when the SCP results in a
lower TVC. For ratios greater than this (as the system becomes
more heterogeneous), the gap between the two communication
times widens, and would be expected to widen. For a detailed
analysis see [9].

Figure 72 shows the resulting difference in execution times
between the SCP and SLP. As expected we also see the
crossover around ratio 3 : 1, and note that the lower TVC that
the SCP brings also results in lower execution times for ratios
above 3 : 1. Again this gap would be expected to widen. It is

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6

C
om

m
un

ic
at

io
n

T
im

e
(s

)

Cluster Power Ratio (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 73. Comparison of the communication times for the MDEM DES model
for both the Square-Corner and Straight-line Partitionings, N = 7, 000.

worth noting that the execution time is higher than was initially
expected but this is due to the lack of an optimizing library
for MPA MMM, unlike normal MMM which can benefit from
the dgemm routine in the BLAS [47], and ATLAS [37].

It is worth noting that since carrying out a matrix power
operation An amounts to nothing more than n repeated matrix
multiplications, carrying out matrix power operations would
also benefit from the above.

F. The Square-Corner Partitioning for Discrete Event Simu-
lation

In Section VI-B we outlined the MDEM model for discrete
event simulations. We use the same experimental platform
as in Section VI-E to demonstrate results on a parallel,
heterogeneous platform of the MDEM model. We utilize both
the SLP and the SCP for the core routine which is a matrix
“and/or” multiplication. We generate the initial conditions so
that the core routine involves a large system (N = 7, 000).
All initial calculations and cleanup are carried out on a single
processor as these calculations are carried out only once and
make up a small percentage of the overall execution time and
are not parallelizable.

Figure 73 shows the communication times which are rela-
tively low due to the use of char as the data type (all data is
binary). Due to the nature of the MDEM all communications
are serialized. The results overall agree with theory, with
the 3 : 1 ratio crossover occurring. Figure 74 shows the
execution times for carrying out the described DES using both
partitioning techniques. It can be seen that the use of the SCP
for the core kernel of the MDEM DES algorithm significantly
reduces the execution time for ratios above 3 : 1, but less so
due to the lower communication time compared to the MPA
MMM. Again the expected crossover occurs near the ratio of
3 : 1. The overall shape of the curves are similar to those of
Section VI-E as the “and/or” MMM in the MDEM involves a
similar computational cost as the max-plus MMM.

G. Conclusion

In this section we explored computing max-plus algebra
matrix operations and a MDEM discrete event simulation on

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 45

 300

 320

 340

 360

 380

 400

 420

 440

 460

 480

 1 2 3 4 5 6

E
xe

cu
tio

n
T

im
e

(s
)

Cluster Power Ratio (x:1)

Square-Corner Partitioning
Straight-Line Partitioning

Fig. 74. Comparison of the total execution times for the MDEM DES model
for both the square-corner and straight-line partitionings, N = 7, 000.

parallel hierarchal heterogeneous platforms. We found that
the initial top-level data partitioning—particularly the use
of the square-corner partitioning—significantly affects overall
execution time due to the total volume of inter-cluster commu-
nication involved. Notably the square-corner partitioning out
performed the straight-line partitioning in all cases where the
power ratio between clusters was≥ 3 : 1. Future work involves
applying similar strategies to speed up more complex routines,
perhaps with more complicated and heavyweight communi-
cation loads, on parallel hierarchal heterogeneous platforms
and experimenting on other parallel hierarchal heterogeneous
networks.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 46

ε ε
ε

ε
1

1 22

A B

Fig. 75. Examples of non-Square-Corner Partitionings investigated.

VII. MOVING AHEAD – MULTIPLE PARTITIONS AND
RECTANGULAR MATRICES

We have seen in Sections III - VI that the Square-Corner
Partitioning proves to have a lower total volume of commu-
nication and a lower execution time than the Straight-Line
Partitioning in many cases for two and three partitions. The
question is, can the Square-Corner Partitioning be extended
to more than three partitions? We have gained some insight
into this question based on the investigation into partition
configurations such as those in Figure 75.

Configurations such as those in Figure 75 are not possible
extensions of the Square-Corner Partitioning for three parti-
tions. This is due to an increase in the number of communi-
cation steps and/or the TVC that violate the definition of the
Square-Corner Partitioning. We conclude therefore that similar
configurations would not be suitable for a number of partitions
greater than three as well. The only configuration we see viable
for an extension to four partitions is one such as that in Figure
76.

Fig. 76. An example of a four partition Square-Corner Partitioning

Moving beyond four partitions, the Square-Corner Partition-
ing takes on a “diagonal” form such as that in Figure 77.
This is because the Square-Corner Partitioning was designed
to have as simple a structure as possible, and any other
configuration has the possibility of violating the definition
of a Square-Corner Partitioning. The name Square-Corner
Partitioning is still appropriate, as the partitions “work” their
ways from corner to corner.

In order to keep within our definition of the Square-Corner
Partitioning, any extension to more than three partitions must:

1) Contain all square partitions except one, possibly two in
the following case:
• Two non-square partitions may be created only in

the cases such as that depicted in Figure 77, where

Fig. 77. An example of a multiple partition Square-Corner Partitioning

square partitions completely bisect the matrix being
partitioned, in which case the two pieces formed
(lower-left and upper-right in Figure 77) will rep-
resent one logical partition, as they are owned by the
same cluster.

2) No square partitions may communicate with each other.
In other words no two square partitions can interrupt the
same row or column.

3) Maintain a one-to-one mapping between clusters and
(logical) partitions

4) Map (logical) partitions to clusters so that the area of
partition si is proportional to the speed of cluster ci,
where si ∈ (s1, s2, . . . , sp) where p is the number of
partitions and si are the areas of the partitions in non-
decreasing order, and ci ∈ (c1, c2, . . . , cp) where ci are
the clusters being mapped in non-decreasing order of
relative speed

5) Partition all matrices A,B,C in the same way
Clearly as the number of clusters (and therefore partitions)

increases the number of possible network topologies will
increase as well. It is believed that restricting the number
and types of topologies will increase the performance of the
Square-Corner Partitioning relative to Straight-Line (rectangu-
lar) partitionings in many cases.

A. The Square-Corner Partitioning for Partitioning Rectangu-
lar Matrices

In order to be as general as possible we are interested in the
applicability of the Square-Corner Partitioning to rectangular
matrices, not just the restricted case of square matrices. It
is believed that the popular test case of the unit square is
fitting for rectangular matrices because any partitioning that
is optimal on the unit square can be scaled to a rectangle and
remain optimal [35].

We will begin in the most general case. We assume only two
clusters, each owning one partition. As always each partition
has an area proportional to the speed of the cluster which owns
it. We then create two partitions, one partition is a rectangle
located in any corner of the matrix, and the other partition
is polygonal—the rest of the matrix with the area of the first
partition removed from it.

To make the case as general as possible we start with a real-
valued rectangular area and partition it into two by creating
a real-valued rectangular partition within the area. We place
three restrictions on this system.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 47

• There are two partitions to be created. This necessitates
defining only one interior partition, as the other partition
will be the area which lies outside the partition defined
but inside the rectangular area being partitioned.

• The area to be partitioned and the interior partition are
rectangular.

• The area of the two partitions are proportional to the
speeds of the clusters owning them.

This gives us a rectangular area of dimension x× y and an
interior rectangular partition α× β as in Figure 78.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
������������������������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

x

y

α

β
Fig. 78. An example of a rectangular matrix with one rectangular (α× β)
partition and one polygonal (x× y − α× β) partition.

In Section IV we showed that the TVC was minimized when
the area equal to the following was minimized:

height of small partition × width of matrix + width of small
partition × height of matrix

In Figure 78, this is represented by the shaded area, which
equates to Γ below:

Γ = α× y + β × x (44)

Proposition 7.1: Γ = α× y+β×x is minimized when the
dimensions of the rectangular partition β × α is scaled to the
matrix x× y such that α

β = x
y .

Proof: We will prove Proposition 7.1 by showing that
whenever the small partition is not scaled as stated, Γ will
always be larger.

Equation 45 describes the state when the rectangular par-
tition is not scaled, i.e. when its height α is decreased by
some quantity c < α, and its width β increased by some other
quantity c′ < β, while maintaining the same area α× β.

α× β = (α− c) (β + c′) (45)

We determine c′ (for simplification later), then we start
with the equation for Γ, but substitute in the values on the
RHS of Equation 45. We then have a function S(c) which
represents the new system, including the non-scaled partition,
where c is the amount that the previously scaled partition has
been changed by. Note that a function in terms of only c is
satisfactory as c is proportional to c′. We show that when
c = 0, dS

dc = 0, and that at this point d2S
dc2 is positive. It is

then shown that any change in c, either positive or negative,
will increase Γ (within the definition of the problem), thus
concluding the proof.

α× β = α× β + α× c′ − c× β − c× c′

c× β = α× c′ − c× c′

c× β = c′ (α− c)

c′ =
c× β
α− c

Γ = x× β + y × α
S(c) = x(β + c′) + y(α− c)

= x× β + x× c′ + y × α− y × c

= x× β +
x× c× β
α− c

+ y × α− y × c

dS
dc

=
x× α× β
(α− c)2

− y

=
x× α× β

αs − 2× α× c+ c2
− y

= x× α× β − y × α2 + 2××α× c× y − y × c2

=
x× α2 × y

x
− y × α2 + 2× α× c× y − y × c2

= 2× α× c× y − y × c2 ∴ when c = 0,
dS
dc

= 0

d2S
dc2

= 2× α× y − 2× c× y

= 2× y(α− c)

c <

def
α ∴

d2S
dc2

is positive

It must now be shown that for any c > 0, d
2S
dc2 is positive, and

that for any c < 0, d
2S
dc2 is negative, to show that the minimum

in d2S
dc2 when c = 0 is not a local, but a global minimum.

d2S
dc2

= 2× α× c× y − y × c2

= c× y × (2× α− c)

c <

def
α

∴ when c is positive,
d2S
dc2

is positive

and when c is negative,
d2S
dc2

is negative

Q.E.D.
Thus we have proven that the area Γ = α × y + β × x is

a minimum when the rectangular partitioning α× β is scaled
so that α

β = x
y , but does minimizing Γ minimize the total

volume of communication when we are multiplying non-square
matrices? The answer is no, as we will see in the next section.

B. The Square-Corner Partitioning for MMM on Rectangular
Matrices

Figure 79 shows that the TVC is at a minimum when we
are dealing with a rectangular matrix matrix multiplication as
opposed to partitioning a rectangular matrix is

α× n+ β × n = n× (α+ β) (46)

where n is one of the three given matrix dimensions, where
a m×n matrix multiplied by a n×p matrix results in a m×p

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 48

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

A BC = +

n

m n

p
p

mCluster 1

Cluster 2

b

α

Fig. 79. The necessary data movements to calculate the rectangular matrix
product C = A×B on two heterogeneous clusters, with one square and one
polygonal partition per matrix.

product, and α × β is the area of the partition placed in the
corner of the rectangular matrices.

Proposition 7.2: The TVC n× (α+β) for a multiplication
of three rectangular matrices C = A×B is minimized when
α = β, that is when the partition of area α × β is a square,
provided α = β < m,n, p where A has dimensions m × n,
B has dimensions n× p and C has dimensions m× p.

Proof: n is a given constant, therefore the goal is to
minimize α + β, where α × β is a constant. Since α + β is
proportional to the perimeter of the rectangle with area α×β,
and the perimeter of any rectangle of a constant given area is
minimized when that rectangle is a square, we conclude that
α = β.

It is interesting to note that the TVC only depends on one
matrix dimension, n, which is the only matrix dimension that
does not feature in the product matrix C. (n only possibly
affects the values of the elements of C.) We can conclude
that minimizing the SHP on a unit square, then scaling that
square to a rectangle does not necessarily minimize the TVC
of a matrix matrix multiplication involving that rectangle. This
topic area demands further investigation particularly what to
do in the case where α = β are > m, n, and/or p.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 49

VIII. CONCLUSIONS AND FUTURE WORK

The current state and foreseeable future of high perfor-
mance scientific computing can be described in three words:
heterogeneous, parallel and distributed. These three simple
words have a great impact on the architecture and design of
HPC platforms and the creation and execution of algorithms
and programs designed to run on them. We have seen that
heterogeneity and hierarchy have infiltrated every aspect of
computing from supercomputers, GPUs and cloud comput-
ing down to individual processors and cores. We have also
seen that in many, many ways all of these technologies are
interwoven and joined to form hybrid entities themselves.
As a result of the inherent heterogeneity, parallelism and
distribution which promises to continue to pervade scientific
computing in the coming years the issue of data distribution
is unavoidable. This, combined with a lack of research into
the area of parallel computing on small numbers of (possibly
powerful) heterogeneous computing entities provided us with
our motivation.

This report presented a new top-level data partitioning
algorithm, the Square-Corner Partitioning, for matrix and
linear algebra operations. This partitioning was designed from
the outset to be parallel and heterogeneous, not relying on
homogeneous counterparts as a starting point. In practice
this partitioning distributes data between a small number of
clusters (each of which can have great computational power
in themselves) in a hierarchal manner, which allows it the
flexibility to be employed in a great range of problem domains
and computational platforms. This partitioning minimizes the
total volume of communication between clusters in a manner
proven to be optimal for a great range of cluster power ratios,
thus minimizing overall execution time. In a hybrid form,
working with existing partitionings, the total volume of com-
munication can be minimized regardless of the power ratio that
exists between the clusters. It also places no restriction on the
algorithms or methods employed on the clusters themselves
locally, thus maximizing flexibility.

The Square-Corner Partitioning is shown to have several
advantages over more traditional Straight-Line (rectangular)
partitionings, not only reducing the total volume of commu-
nication in an optimal manner, but allowing the overlapping
of communication and computation, and necessitating fewer
communication steps.

This partitioning was compared to the state-of-the-art the-
oretically and experimentally. Both its benefits and deficits
were discussed and demonstrated. The Square-Corner Parti-
tioning showed to be beneficial in performing matrix matrix
multiplications in several scenarios:
• Two processor MMM
• Small two cluster MMM
• Large two cluster MMM
• Three processor MMM
• Large three cluster MMM
The Square-Corner Partitioning was experimentally shown

to be applicable to max-plus algebra operations as well as
discrete event simulations.

The Square-Corner Partitioning was also theoretically

shown to be applicable to non-square matrix matrix multi-
plications and minimizing the total volume of communication
in this most general realm of matrix computation. Additionally
it is shown to be extendable to more than three clusters.

Most heterogeneous algorithms and partitionings are de-
signed by modifying existing homogeneous ones. With this in
mind the last goal of this report was to demonstrate that non-
traditional and perhaps unintuitive algorithms and partitionings
designed with heterogeneity in mind from the start can result
in better, and in cases optimal, algorithms and partitionings
for heterogeneous platforms. The importance of this given
the current outlook for, and trends in, the future of high
performance scientific computing is obvious.

Future work precipitating from the work in this report
include the following:
• Experiment with the Square-Corner Partitioning on more

platforms and architectures, possibly including Grid Ire-
land.

• Optimize the overlapping of communication and compu-
tations while remaining within the bounds of the Square-
Corner definition.

• Experiment with the possible benefits of the Square-
Corner Partitioning on low-level architectures such as
multi-core processors.

• Apply the Square-Corner Partitioning to more complex
linear algebra routines and applications with more com-
plex and heavy weight communication schedules and
volumes.

• Experiment with the Square-Corner Partitioning on non-
square matrix systems and operations.

• Experiment with more than three partitions to determine
what configurations can reduce the TVC and under what
conditions this occurs.

• Develop fully the Hybrid Square-Corner Partitioning con-
cept.

• Apply the Square-Corner Partitioning to sparse matrix
systems.

• Investigate partitionings for matrix matrix multiplication
on non-square matrices as discussed in Section VII-B.

• Explore the role of the Square-Corner Partitioning as well
as other novel partitioning algorithms in the domain of
cloud computing.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 50

ACKNOWLEDGMENTS

This work was supported by the University College Dublin
School of Computer Science and Informatics.

This work was supported by Science Foundation Ireland.

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies.

REFERENCES

[1] O. Beaumont, V. Boudet, A. Legrand, F. Rastello, and Y. Robert,
“Heterogeneous matrix-matrix multiplication or partitioning a square
into rectangles: NP-Completeness and approximation algorithms,” in
Proceedings of the Ninth Euromicro Workshop on Parallel and Dis-
tributed Processing, 2001. IEEE, 2002, pp. 298–305.

[2] L. Canon and E. Jeannot, “Wrekavoc: a tool for emulating heterogene-
ity,” in Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International. IEEE, 2006, p. 11.

[3] J. Dongarra and A. Lastovetsky, “An overview of heterogeneous high
performance and grid computing,” Engineering the Grid: Status and
Perspective, pp. 1–25, 2006.

[4] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix-Matrix
multiplication on heterogeneous platforms,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 12, no. 10, pp. 1033–1051, 2001.

[5] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Partitioning
a square into rectangles: NP-Completeness and approximation algo-
rithms,” Algorithmica, vol. 34, no. 3, pp. 217–239, 2002.

[6] E. Dovolnov, A. Kalinov, and S. Klimov, “Natural block data decompo-
sition for heterogeneous clusters,” Proceedings of the 17th International
Parallel and Distributed Processing Symposium, 2003.

[7] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of compu-
tations while solving linear algebra problems on networks of heteroge-
neous computers,” Proceedings of the 7th International Conference on
High Performance Computing and Networking Europe, 1999.

[8] A. Lastovetsky, “On grid-based matrix partitioning for heterogeneous
processors,” in Proceedings of the Sixth International Symposium on
Parallel and Distributed Computing. IEEE Computer Society, 2007,
p. 51.

[9] B. Becker and A. Lastovetsky, “Matrix multiplication on two inter-
connected processors,” in Proceedings of the 8th IEEE International
Conference on Cluster Computing (Cluster 2006). Barcelona, Spain:
IEEE Computer Society, 25-28 Sept 2006 2006.

[10] B. Becker and A. Lastovetsky, “Towards data partitioning for parallel
computing on three interconnected clusters,” in Proceedings of the
6th International Symposium on Parallel and Distributed Computing
(ISPDC 2007). Hagenberg, Austria: IEEE Computer Society, 5-8 July
2007.

[11] B. Becker and A. Lastovetsky, “Max-plus algebra and discrete event
simulation on parallel hierarchical heterogeneous platforms,” Springer
Lecture Notes in Computer Science, Euro-Par Workshops Proceedings
2010, as Part of Hetero-Par 2010, vol. 6586, p. 63, 2011.

[12] B. Becker, “High-level data partitioning for parallel computing on
heterogeneous hierarchical computational platforms,” PhD Thesis, Uni-
versity College Dublin, Dublin, Ireland, 04/2011 2011.

[13] P. Boulet, J. Dongarra, F. Rastello, Y. Robert, and F. Vivien, “Algorithmic
issues on heterogeneous computing platforms,” Parallel processing
letters, vol. 9, no. 2, pp. 197–213, 1999.

[14] I. Foster and C. Kesselman, The grid: blueprint for a new computing
infrastructure. Morgan Kaufmann, 2004.

[15] T. Brady, J. Dongarra, M. Guidolin, A. Lastovetsky, and K. Seymour,
“SmartGridRPC: The new RPC model for high performance grid com-
puting,” Concurrency and Computation: Practice and Experience, 2010.

[16] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab et al., “Grid’5000: a large
scale and highly reconfigurable experimental grid testbed,” International
Journal of High Performance Computing Applications, vol. 20, no. 4,
p. 481, 2006.

[17] Kruger and Westerman, “Linear algebra operators for GPU implemen-
tatin of numerical algorithms,” International Conference on Computer
Graphics and Interactive Techniques, 2005.

[18] C. van Berkel, “Multi-core for mobile phones,” in Design, Automation
& Test in Europe Conference & Exhibition, 2009. DATE’09. IEEE,
2009, pp. 1260–1265.

[19] S. Lee, J. Oh, J. Park, J. Kwon, M. Kim, and H. Yoo, “A 345 mw
heterogeneous many-core processor with an intelligent inference engine
for robust object recognition,” Solid-State Circuits, IEEE Journal of,
vol. 46, no. 1, pp. 42–51, 2011.

[20] G. Diamos and S. Yalamanchili, “Harmony: an execution model and
runtime for heterogeneous many core systems,” in Proceedings of
the 17th international symposium on High performance distributed
computing. ACM, 2008, pp. 197–200.

[21] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on hetero-
geneous multicore platforms,” in 2011 IEEE International Conference
on Cluster Computing (Cluster 2011), IEEE Computer Society. Austin,
Texas, USA: IEEE Computer Society, Sept 26-30 2011, pp. 580–584.

[22] A. Lastovetsky, Parallel computing on heterogeneous networks. Wiley-
IEEE, 2003.

[23] R. van de Geijn and J. Watts, “SUMMA: scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, vol. 9,
no. 4, pp. 255–274, 1997.

[24] F. Csikor, Z. Fodor, P. Hegedus, S. Katz, A. Piroth, and V. Horvath,
“The poor man’s supercomputer,” in Distributed and parallel systems.
Kluwer Academic Publishers, 2000, pp. 151–154.

[25] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to
parallel computing: design and analysis of algorithms. The Ben-
jamin/Cummings, 1994.

[26] A. Lastovetsky and R. Reddy, “On performance analysis of heteroge-
neous parallel algorithms,” Parallel Computing, vol. 30, pp. 1195–1216,
2004.

[27] L. Blackford, A. Cleary, J. Choi, E. d’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet et al., ScaLAPACK
users’ guide. Society for Industrial Mathematics, 1997.

[28] H.-J. Lee, J. P. Robertson, and J. A. B. Fortes, “Generalized Cannon’s
algorithm for parallel matrix multiplication,” in ICS ’97: Proceedings of
the 11th international conference on Supercomputing. New York, NY,
USA: ACM, 1997, pp. 44–51.

[29] G. Golub and C. Van Loan, Matrix computations. Johns Hopkins
University Press, 1996.

[30] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker,
Solving problems on concurrent processors. Prentice Hall Inc., 1988.

[31] C. Lin and L. Snyder, “A matrix product algorithm and its comparative
performance on hypercubes,” in Scalable High Performance Computing
Conference, 1992. SHPCC-92. Proceedings., 1992, pp. 190–194.

[32] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. Wha-
ley, “A proposal for a set of parallel basic linear algebra subprograms,”
Applied Parallel Computing Computations in Physics, Chemistry and
Engineering Science, pp. 107–114, 1996.

[33] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of compu-
tations solving linear algebra problems on networks of heterogeneous
computers,” Journal of Parallel and Distributed Computing, vol. 61, pp.
520–535, 2001.

[34] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, “A pro-
posal for a heterogeneous cluster ScaLAPACK (dense linear solvers),”
IEEE Transactions on Computers, vol. 50, no. 10, pp. 1052–1070, 2001.

[35] A. Lastovetsky and J. Dongarra, High performance heterogeneous
computing. Wiley-Interscience, 2009.

[36] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation mpi implementation,”
Proceedings of the 11th European PVM/MPI Users’ Group Meeting,
2004.

[37] R. C. Whaley and J. Dongarra, “Automatically tuned linear algebra
software,” Ninth SIAM Conference on Parallel Processing for Scientific
Computing, 1999.

[38] M. Kirov, “The transfer-matrix and max-plus algebra method for global
combinatorial optimization: application to cyclic and polyhedral water
clusters,” Physica A: Statistical Mechanics and its Applications, vol.
388, no. 8, pp. 1431–1445, 2009.

[39] J. Comet, “Application of max-plus algebra to biological sequence
comparisons,” Theoretical Computer Science, vol. 293, no. 1, pp. 189–
217, 2003.

[40] S. Gaubert and M. Plus, “Methods and applications of (max,+) linear
algebra,” in STACS 97. Springer, 1997, pp. 261–282.

BRETT A. BECKER, TECHNICAL REPORT UCD-CSI-2011-10 51

[41] B. Heidergott, G. Olsder, and J. van der Woude, Max Plus at work:
modeling and analysis of synchronized systems: a course on max-plus
algebra and its applications. Princeton University Press, 2006.

[42] D. Tacconi and F. Lewis, “A new matrix model for discrete event
systems: application to simulation,” IEEE Control Systems Magazine,
vol. 17, no. 5, pp. 62–71, 1997.

[43] M. Johnson and M. Kambites, “Multiplicative structure of 2x2 tropical
matrices,” Arxiv preprint arXiv:0907.0314, 2009.

[44] B. De Schutter and B. De Moor, “On the sequence of consecutive powers
of a matrix in a Boolean algebra,” SIAM Journal on Matrix Analysis and
Applications, vol. 21, no. 1, 1999.

[45] G. Fishman, Discrete-event simulation: modeling, programming, and
analysis. Springer Verlag, 2001.

[46] A. Ferscha and S. Tripathi, “Parallel and distributed simulation of
discrete event systems,” Parallel and Distributed Computing Handbook,
pp. 1003–1041, 1996.

[47] L. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet et al., “An updated
set of basic linear algebra subprograms (BLAS),” ACM Transactions on
Mathematical Software (TOMS), vol. 28, no. 2, pp. 135–151, 2002.

