
August 19, 2016 Computer Science Education Becker˙2016

To appear in Computer Science Education
Vol. 00, No. 00, Month 20XX, 1–27

RESEARCH ARTICLE

Effective Compiler Error Message Enhancement for Novice

Programming Students

Brett A. Beckera∗†, Graham Glanvillea, Ricardo Iwashimaa, Claire McDonnellb, Kyle

Goslina, and Catherine Mooneyc

aCollege of Computing Technology, 30-34 Westmoreland St, Dublin 2, Ireland; bDublin

Institute of Technology, Aungier St, Dublin 2, Ireland; cRoyal College of Surgeons in

Ireland, 123 Stephen’s Green, Dublin 2, Ireland

(August 19, 2016)

Programming is an essential skill that many computing students are expected to mas-
ter. However, programming can be difficult to learn. Successfully interpreting compiler
error messages is crucial for correcting errors and progressing towards success in pro-
gramming. Yet these messages are often difficult to understand and pose a barrier
to progress for many novices, with struggling students often exhibiting high frequen-
cies of errors, particularly repeated errors. This paper presents a control/intervention
study on the effectiveness of enhancing Java compiler error messages. Results show
that the intervention group experienced reductions in the number of overall errors,
errors per student, and several repeated error metrics. These results are important as
the effectiveness of compiler error message enhancement has been recently debated.
Further, generalizing these results should be possible at least in part, as the control
group is shown to be comparable to those in several studies using Java and other
languages.

Keywords: compiler errors; compiler error enhancement; syntax errors; novice
programmers; Java; CS1

1. Introduction

An expected outcome of a computer science student’s education is programming
skill (McCracken, Almstrum, Diaz, Guzdial, Hagan, Kolikant, Laxer, Thomas, Ut-
ting, and Wilusz, 2001) which is also a core competency for employment in several
IT industries (Orsini, 2013). However many students find programming difficult
and struggle to master the core concepts (Bergin and Reilly, 2005). CS1, the
first-year programming course in a degree program, often has high failure rates
(Bennedsen and Caspersen, 2007; Porter, Guzdial, McDowell, and Simon, 2013;
Yadin, 2011). Further, difficulty with computer programming has been shown
to contribute to well-documented dropout rates in computer science programs
(Caspersen and Bennedsen, 2007). In many countries including Germany (Schäfer,
Holz, Leonhardt, Schroeder, Brauner, and Ziefle, 2013), Ireland (Liston, Frawley,
and Patterson, 2016), the United Kingdom (Matth́ıasdóttir and Geirsson, 2011),

∗Corresponding author. Email: brett.becker@ucd.ie
†Now at School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

1

This is the Accepted Manuscript of an article published by Taylor & Francis in Computer Science Education on Sept
19, 2016, available online: www.tandfonline.com/doi/full/10.1080/08993408.2016.1225464.

http://www.tandfonline.com/doi/full/10.1080/08993408.2016.1225464

August 19, 2016 Computer Science Education Becker˙2016

and the United States (Sloan and Troy, 2008), computer science has worryingly
high dropout rates—often the highest of all disciplines.

Compiler error messages (CEMs) are one of the most important tools that a
language offers its programmers, and for novices their feedback is especially critical
(Marceau, Fisler, and Krishnamurthi, 2011a). However CEMs are often cryptic and
pose a barrier to success for novice programmers who have been shown in several
studies to have trouble interpreting them (Hartmann, MacDougall, Brandt, and
Klemmer, 2010; Hristova, Misra, Rutter, and Mercuri, 2003; Kummerfeld and Kay,
2003; Traver, 2010).

This study investigates the effectiveness of enhanced compiler error messages
(ECEMs). Although some systems which aim to help novice programmers provide
ECEMs as a feature, ECEMs have not often been studied rigorously or in isolation.
This is important as links can be drawn between CEMs and performance in pro-
gramming (Jadud, 2006; Rodrigo, Baker, Jadud, Amarra, Dy, Espejo-Lahoz, Lim,
Pascua, Sugay, and Tabanao, 2009; Tabanao, Rodrigo, and Jadud, 2011).

A recent study that is particularly significant to our analysis is (Denny, Luxton-
Reilly, and Carpenter, 2014), which also investigated ECEMs in an empirical con-
trol/intervention manner but presented evidence that error message enhancement
is ineffectual. In contrast our study finds that ECEMs have many positive effects.

In our own practice we have made several observations which motivate this re-
search:

(1) Some students are confounded by compiler error messages and do not directly
correlate them with errors in their code.

(2) Some students ask for help on particular CEMs multiple times. It seems
that they are not learning from CEMs—instead they see them as hindrances,
blocking them from completing the task at hand.

(3) CEMs vary in usefulness, clarity and arguably correctness—to a novice they
can sometimes seem wrong.

This study focuses on Java, one of the most popular programming languages for
teaching novices to program (Davies, Polack-Wahl, and Anewalt, 2011; Guo, 2014;
Siegfried, Greco, Miceli, and Siegfried, 2012), and one of the most popular languages
used in industry (Cass, 2015; TIOBE, 2016). It should be noted that the choice
of Java as an introductory programming language is not without critics (Siegfried,
Chays, and Herbert, 2008), and that Python has recently grown in popularity as
an introductory language (Guzdial, 2011), on some counts overtaking Java (Guo,
2014).

This study utilizes a pedagogic Java editor called Decaf, specifically written for
this research. The principal consideration that influenced the design of Decaf was
that Java CEMs could, and should, be improved upon. This was partially inspired
by the work of Michael Kölling, who said of error messages (Kölling, 1999, pp.
145-146):

Good error messages make a big difference in the usability of a system
for beginners. Often the wording of a message alone can make all the
difference between a student being unable to solve a problem without
help from someone else and a student being able to quickly understand
and remove a small error. The first student might be delayed for hours
or days if help is not immediately available (and even in a class with
a tutor it may take several minutes for the tutor to be able to provide
the needed help).

2

August 19, 2016 Computer Science Education Becker˙2016

Decaf uses available information (the erroneous line of code and the CEM gen-
erated) to construct more specific and helpful ECEMs which are presented to the
user, alongside the original CEMs. Where possible, Decaf attempts to utilize infor-
mation such as method or variable names that are involved in the error. The aim is
to help students rectify their errors more effectively, while providing a side-by-side
opportunity to learn the actual meanings of the original, often cryptic CEMs.

We chose to develop our own editor because we wanted to provide our students
with a simple, novice-friendly environment not based on any particular approach.
This ruled out developing a plugin for more complicated IDEs such as Eclipse
which has many features extraneous for novices, or for BlueJ which despite being
aimed at novices, encourages an objects-first approach (Jadud, 2006).

We compared the following metrics between a control group who used Decaf in
pass-through mode (with no ECEMs) and an intervention group who used Decaf
in enhanced mode (with ECEMs):

• Total number of errors in each group
• Number of errors per student, including those generating specific CEMs
• Number of repeated errors, Jadud’s error quotient (Jadud, 2005, 2006), and

the repeated error density (Becker, 2016b)

The aim of this research is to discover if enhancing compiler error messages is
effective in helping students learn to program. We seek to answer the following
research questions:

(1) Do enhanced compiler error messages reduce the overall number of errors?
(2) Do enhanced compiler error messages reduce the number of errors per stu-

dent?
(3) Do enhanced compiler error messages reduce the incidence of repeated errors?
(4) Do students find enhanced compiler error messages beneficial?

This paper is laid out as follows: Section 2 presents a background to, and related
work on, CEMs and their enhancement. Section 3 presents our methods and Section
4 presents our results, first from a high-level ‘group view’, before answering the
questions proposed above. We also provide a basis for generalization of our results.
We then discuss threats to validity. Section 5 presents our conclusions and future
work.

1.1. Terminology

This paper uses the term error to describe a student-committed error in code
that generates a compiler error message (CEM). Our research questions seek to
determine the impacts of enhanced CEMs (ECEMs) on student errors. Therefore
number of errors per CEM is used to describe the number of errors that generated
a particular compiler error message. This allows us to discuss errors in isolation (as
errors), CEMs in isolation (as CEMs or ECEMs), or to discuss both (as errors per
CEM). These distinctions are also useful as there is not necessarily a one to one
mapping of errors to CEMs (and vice-versa) in Java (Altadmri and Brown, 2015).
As such, it is possible for two different errors to generate the same CEM. Similarly,
the same error (in different contexts) may generate different CEMs. Therefore,
all that is initially known when a CEM occurs are the details of that particular
CEM, and that a single error generated it. Although the CEM often indicates
something about the particular nature of the error, this cannot be assumed in all

3

August 19, 2016 Computer Science Education Becker˙2016

cases. In Section 3 we discuss that Decaf can at times use source code to gain more
information about particular errors when they occur in an effort to provide more
useful ECEMs.

2. Background and related work

2.1. Compiler error messages

As far back as the 1970s it became evident that in general, compiler error messages
were not fit for purpose. Litecky and Davis (1976) investigated CEMs in COBOL,
determining that their feedback was not optimal for users, particularly students. As
computer science education became more widespread, Pascal secured its position as
the first dominant programming language for teaching. Brown (1983) investigated
issues with CEMs in Pascal, finding them to be inadequate, and later Chamillard
and Hobart Jr (1997) addressed concerns over syntax errors in their transition
from Pascal to Ada97. Kummerfeld and Kay (2003) investigated CEMs in C, and
gave important insight into the growing concern over poor error messages. Bergin,
Agarwal, and Agarwal (2003) pointed out numerous issues with C++ in its use
as a teaching language, including CEM difficulties. C++ was a dominant teaching
language of its time (taking the lead from Pascal) and eventually replaced by Java.

CEMs play at least two important roles: as a programming tool they should help
the user progress towards a working program, and as a pedagogic tool they should
help the user understand the problem that led to the error (Marceau et al., 2011a;
Marceau, Fisler, and Krishnamurthi, 2011b). However, dealing with CEMs is often
a frustrating experience for students (Flowers, Carver, and Jackson, 2004; Hsia,
Simpson, Smith, and Cartwright, 2005). Jadud goes as far as stating that compilers
are “veritable gold mines for cryptic and confusing error messages” (Jadud, 2006, p.
1), while Traver (2010, p. 4) describes Java errors in particular as “undecipherable”.
Ben-Ari (2007) noted that educators resorted to writing supplementary material to
help explain CEMs (doing so himself), while McCall and Kölling (2014, p. 1) stated:
“Compiler error messages ... are still very obviously less helpful than they could be”.
Disturbingly, these statements are very similar to those made in the 1970s. Even in
modern environments designed for novices such as Alice (Moskal and Lurie, 2004)
and BlueJ (Kölling, Quig, Patterson, and Rosenberg, 2003), difficulty interpreting
compiler error messages has been a student complaint (Hagan and Markham, 2000;
Rey, 2009).

CEMs also pose problems for educators, particularly in the context of instructor-
led or supported laboratory sessions. Coull (2008) identified that tutors spend large
amounts of time solving trivial syntactic problems and that time spent with any
individual student may be substantial, extending the time other students must wait
for help. In addition, as many students tend to make mistakes similar to those of
their peers at similar stages, tutors find themselves solving the same problems for
several individuals independently. Denny et al. (2014, p. 278) noted: “As educators,
we have a limited amount of time to spend with each student so providing students
with automated and useful feedback about why they are getting syntax errors is
very important”.

The frequency of errors, and particularly repeated errors, has been linked to tra-
ditional measures of academic success. Jadud (2006) investigated the link between
student performance and the error quotient (EQ), a metric influenced heavily by

4

August 19, 2016 Computer Science Education Becker˙2016

repeated errors. Although some correlations were found to exist they were weak,
and the overall conclusion was that EQ and academic performance are related, but
exactly how remained to be seen. However, Rodrigo et al. (2009), found that test
scores could be predicted with simple measures such as the student’s average num-
ber of errors, number of pairs of compilations in error, number pairs of compilations
with the same error, pairs of compilations with the same edit location, and pairs
of compilations with the same error location. This study clearly linked compilation
behavior to performance, but the mechanisms at work, and whether this was just a
special case, warrant further research. Tabanao et al. (2011) successfully predicted
midterm exam scores with student error profiles, but was not able to accurately
identify at-risk students, a goal which has remained elusive to achieve.

It should be noted that efforts to draw these and similar links are becoming more
sophisticated as the amount of data available increases. Ahadi, Lister, Haapala,
and Vihavainen (2015) explored machine learning techniques to analyze naturally
accumulating programming process data (NAPPD) to identify students in need of
assistance. Similar data is analyzed using principal component analysis by Becker
and Mooney (2016) and here in Section 4. As the amount of NAPPD becoming
available continues to grow due to larger studies such as Blackbox (Brown, Kölling,
McCall, and Utting, 2014), such techniques will be increasingly important.

2.2. Compiler error enhancement

Although reports on the difficulties posed by compiler error messages have a history
of over 40 years, there is not an abundance of research on enhancing them. Schorsch
(1995) introduced CAP (Code Analyzer for Pascal), an automated tool to check
Pascal programs for syntax, logic and style errors. CAP provided ECEMs designed
to inform the student what was wrong, why, and how to fix the cause. These often
included sample/example code, and did not shy away from personal touches such
as humor, similar to Gauntlet (Flowers et al., 2004) described later. It was reported
that the quality of student programs was improved through using CAP.

Hristova et al. (2003) introduced Expresso, a pre-compiler which scans Java
programs for 20 common errors and provides users with ECEMs where possible.
A drawback of Expresso is that error messages may not appear in line-number
sequence due to a multiple-pass design. Being presented with errors which are not
in line-number sequence is not desirable for at least two reasons. First, novice
students often think sequentially—that is line-by-line. Second, students are often
taught to tackle the first error message, due to the possibility of cascading errors
(Burgess, 1999). These are not true errors in as much as they are immediately
resolved when the original error is. To avoid being confused by cascading errors,
Ben-Ari (2007, p. 6) advises: “Do not invest any effort in trying to fix multiple
error messages! Concentrate on fixing the first error and then recompile”. Following
this line of thought, the inclusion of the second and subsequent errors is a likely
source of confusion and frustration, particularly for novices. This consideration has
influenced the design of Decaf, discussed in Section 3.1.

Thompson (2004) focused on an Eclipse plug-in called Gild, specifically for novice
Java programmers. Gild was updated to include a feature with “extra error sup-
port” which consisted of ECEMs for 51 of 347 possible errors. This work and the
Gild editor had many objectives, with the effects of compiler error enhancement
making up three of six research questions. In addition, it was an exploratory work
with a small number of students—less than 10 for quantitative results, depending

5

August 19, 2016 Computer Science Education Becker˙2016

on the sub-study in question. The results were not conclusive as to whether or not
students became faster at fixing their errors over the course of the study (compi-
lation times was the metric focused on). It was concluded that Gild needed more
specific error messages and better coverage of errors most encountered by students.

Flowers et al. (2004) introduced a tool called Gauntlet which focused on providing
Java ECEMs. After targeting the top 50 novice errors, they focused on nine which
they believed to be most common. The authors used Gauntlet for 18 months in
a first-year module which included programming. The authors believed that the
quality of student work improved, time was saved, and instructor workload was
reduced, however no empirical results were presented.

Coull (2008) introduced a framework for support tools that addresses both pro-
gram and problem formulation for novices. One of the requirements of such tools
is to present both standard compiler and enhanced support concurrently. This
influenced the design of Decaf discussed in Section 3.1. Only three systems cate-
gorized by Coull met this requirement, CAP being one. The same work also pre-
sented SNOOPIE (Supporting Novices in an Object Oriented Programming Inte-
grated Environment), using the framework, for learning Java. Although the scope
of SNOOPIE was well beyond ECEMs, they were one of the primary facets. It was
shown that this support was beneficial to a small group of students, particularly
for non-trivial syntactic errors.

Other systems which provided some form of ECEMs, but for which no quanti-
tative evaluations were carried out include Argen (Toomey and Gjengset, 2011),
HelpMeOut (Hartmann et al., 2010), a system by Lang (2002), and JJ (Motil and
Epstein, nd), discussed by Kelleher and Pausch (2005) and Farragher and Dobson
(2000).

All of the studies discussed so far put most focus on addressing the problem
(providing ECEMs), but lack empiricism in determining if they make any difference
to novices. Denny et al. (2014) implemented an enhanced feedback system to users
of CodeWrite (Denny, Luxton-Reilly, Tempero, and Hendrickx, 2011), a web-based
tool designed to help students complete Java exercises. This paper presented a
control/intervention study on the effects of Java ECEMs. The system was used
with students attempting exercises which required them to complete the body of
a method for which the header was provided. Thus students were not writing code
from scratch, and may not have been experiencing the full gamut of CEMs that
novices may encounter. Students participated by completing lab exercises for a
period of two weeks as part of an accelerated summer course. To evaluate their
system, the authors investigated the following.

(1) The number of consecutive non-compiling submissions made while attempt-
ing a given exercise.

(2) The total number of non-compiling submissions across all exercises.
(3) The number of attempts needed to resolve the most common kinds of errors.

Their analysis concluded the following, with reference to the three lines of inves-
tigation identified above.

(1) There were no significant differences between groups.
(2) Although students viewing the enhanced error messages made fewer non-

compiling submissions overall, the variance of both groups was high, and the
difference between the means was not significant.

(3) There was no evidence that the enhanced feedback affected the average num-

6

August 19, 2016 Computer Science Education Becker˙2016

ber of compiles needed to resolve three common syntax errors (cannot resolve
identifier, type mismatch, and missing semicolon).

The authors state several possible reasons for their null results as well as threats
to validity, including that the raw compiler feedback shows up to two CEMs, while
the enhanced feedback module displays only one in an attempt to reduce the com-
plexity for students. This may allow some students to correct two errors at once
while using the raw compiler messages, or may confuse other students by present-
ing more than one error to correct. This was a consideration when designing Decaf,
discussed in Section 3.1.

In previous work we showed that there was a significant reduction in the number
of errors encountered by an intervention group that received ECEMs compared to a
control group that did not (Becker, 2016a). We also reported preliminary evidence
that the number of repeated errors was significantly reduced. In Becker (2016b) we
provided further evidence that the number of repeated errors was reduced in an
intervention group receiving ECEMs.

Our previous work simply compared groups of students (control and intervention)
without separating out raw CEMs and ECEMs—the control group experienced
raw CEMs for all errors, while the intervention group received 30 enhanced CEMs
and the remainder raw. This is due to the fact that Decaf does not enhance all
possible CEMs. The fact that the intervention group received a mix of enhanced
and unenhanced CEMs means that we were not comparing the effects of CEMs and
ECEMs as directly as possible. The present study more directly measures how the
control and intervention groups interact with raw CEMs and ECEMs by measuring
how each group interacts with these separately. That is, we directly measure the
effect of CEMs and ECEMs on each group rather than simply comparing the two
groups.

3. Methodology

3.1. Decaf and the enhanced error messages

This research utilizes a Java editor called Decaf, specifically written for this research
by the authors. Decaf uses the raw CEM generated and the erroneous line of code
(which may contain relevant information such as identifier names) to construct
more specific and helpful ECEMs which are presented to the user, along with the
original CEMs. Decaf has two modes, pass-through and enhanced. In pass-through
mode there is no enhancement of the raw javac CEMs. In enhanced mode, enhanced
CEMs are presented alongside the original raw CEMs, for 30 selected CEMs. Figure
1 shows a schematic of how Decaf interacts with the system and users. Figures 2
and 3 show screenshots of Decaf in pass-through and enhanced modes respectively.

Decaf’s ECEMs were designed by gathering recommendations from several
sources including many previous works in Section 2.2. We also utilized the work
of Traver (2010) who provided eight principles of good error message design using
examples of C++ CEMs to illustrate them. As the syntax of beginner-level Java
is C-like, these were translated into practical advice for writing Decaf’s ECEMs.
Other sources used include (Lang, 2002; Marceau et al., 2011a; Nielsen, 1994; Pane
and Myers, 1996). The CEMs to be enhanced were compiled from lists of frequent
Java errors from 11 studies presented in Table S1. Details of some individual CEMs
including likely causes from Ben-Ari (2007) were also used. Finally, we included

7

August 19, 2016 Computer Science Education Becker˙2016

Figure 1. Schematic of Decaf and interactions with user, JDK/javac and database. 1In pass-through mode,

the enhanced error is omitted. 2Through the runtime environment.

Figure 2. Decaf in pass-through mode, where CEMs are not enhanced, but passed straight on to the user.

Here the CEMs incompatible types and cannot find symbol have occurred.

Figure 3. Decaf in enhanced mode. Here the CEMs incompatible types and cannot find symbol have

occurred. The raw CEM(s) are presented at the top, while the first is enhanced and presented at the

bottom.

8

August 19, 2016 Computer Science Education Becker˙2016

several errors which we have seen occur frequently with beginners in our own prac-
tice that were not mentioned in the above:

• class <class name> is public, should be declared in a file named <class
name>.java

• ‘.’ expected
• illegal character <character>
• array required, but <type> found

Table 1 shows all 30 CEMs enhanced by Decaf. In cases where a particular CEM
can be generated by one of several errors, program logic attempts to determine
the specific error by analyzing the offending line of user code which may contain
useful information such as identifier names. One such example is the CEM cannot
find symbol. Ben-Ari (2007) notes that this error can be caused by inconsistencies
between the declaration of an identifier and its use. A non-exhaustive list of syntax
errors resulting in this CEM is:

(1) misspelled identifier (including capital letters used incorrectly)
(2) calling a constructor with an incorrect parameter signature
(3) using an identifier outside its scope

Table 1. CEMs enhanced by Decaf.

CEM number CEM description

1 ‘(’ expected
2 ‘(’ or ‘[’ expected
3 ‘)’ expected
4 ‘.’ expected
7 ‘;’ expected
8 ‘[’ expected
9 ‘]’ expected
10 ‘{’ expected
11 ‘}’ expected
12 <identifier> expected
16 array required, but *type* found
19 bad operand type *type name* for unary operator ‘*operator*’
20 bad operand types for binary operator ‘*operator*’
24 cannot find symbol
29 class *class name* is public, should be declared in a file named *class name*.java
32 class, interface, or enum expected
47 illegal character: ‘*character*’
51 illegal start of expression
57 incompatible types: *type* cannot be converted to *type*
61 invalid method declaration; return type required
67 missing return statement
73 non-static variable *variable name* cannot be referenced from a static context
74 not a statement
77 package *package name* does not exist
78 possible loss of precision
83 ‘try’ without ‘catch’, ‘finally’ or resource declarations
86 unclosed comment
89 unexpected type
91 unreported exception *exception type*; must be caught or declared to be thrown
92 variable *variable name* is already defined in method *method name*

Program 1 shows a small Java program containing one syntax error of type
(1) above, and Table 2 shows the javac (unenhanced) CEM along with the Decaf
(enhanced) ECEM which are generated by this error.

9

August 19, 2016 Computer Science Education Becker˙2016

Program 1. Java program with syntax error

1 public class Hello{
2 public static void main(string[] args){
3 System.out.println("Hello World");
4 }
5 }

Table 2. javac (unenhanced) CEM and Decaf (enhanced) ECEM generated by Program 1

C:\Users\Brett\Desktop\junk\Hello.java:2: error: cannot find symbol
public static void main(string[] args){

∧

CEM (javac) symbol: class string
location: class Hello

1 error
Process terminated ... there were problems.

ECEM (Decaf)
Looks like a problem on line number 2.
If “string” refers to a datatype, capitalize the ‘s’ !

This work is primarily concerned with compile-time errors (syntactic and those
semantic errors which are caught by javac). However, inspired by Murphy, Kim,
Kaiser, and Cannon (2008) who developed a tool which enhanced runtime errors in
Java, Decaf also provides enhanced error messages for the following runtime errors,
in a manner very similar to the compile-time ECEMs it provides:

• java.lang.ArrayIndexOutOfBoundsException
• java.lang.NullPointerException
• java.lang.ArithmeticException: / by zero
• java.lang.StringIndexOutOfBoundsException
• java.util.InputMismatchException
• FileNotFoundException
• NumberFormatException

3.2. Study design

Two cohorts of approximately 100 students, separated by one academic year, were
included in the study. The students were enrolled in the CS1 module as part of a
BSc in Information Technology. The control group had a female to male ratio of
1:2.57 and an average age of 26. The intervention group had a female to male ratio
of 1:3 and an average age of 28. Attendance records and numbers of lab submissions
indicate similar levels of engagement and motivation for both groups. All students
in this study used Java SE 7.

The module was delivered by the same lecturer in year 1 and year 2 and the
lecture schedule, content and assessment strategy was as similar as possible for
both years. In year 1, control group students used Decaf in pass-through mode,
where there is no enhancement of CEMs. In year 2, intervention group students
used Decaf in enhanced mode, with the ECEMs presented alongside CEMs (for
CEMs where ECEMs are available). We logged data for six weeks but only used
weeks 2-5 for analysis. During this period each group was working at steady-state—
In week 1 Decaf was being installed and in week 6 students were transitioning to

10

August 19, 2016 Computer Science Education Becker˙2016

another editor. Each group had the following data logged, for each CEM generated:

• compiler ID (an anonymous integer representing a unique Decaf installation)
• line of code and class generating CEM
• CEM
• ECEM (intervention group)
• date / time

A recent study particularly relevant to ours provided evidence that enhancing
compiler error messages is not effective (Denny et al., 2014). The present study
differs from that in the following ways:

(1) We analyze the number of errors generating all CEMs, not just three.
(2) We do not measure the number of non-compiling submissions to an assign-

ment, but the number of errors generated.
(3) We measure errors not only while completing laboratory exercises but all

student programming activities such as simply practicing programming.
(4) Our ECEMs do not provide examples of code, only enhanced versions of the

raw CEMs.
(5) We do not provide any skeleton or starter code to students.
(6) Decaf only presents one ECEM at a time compared to two.
(7) Our study is over four weeks compared to two.
(8) Our study involves over 200 students compared to 83.

In this study we directly distinguish between two sets of CEMs, the 30 that are
enhanced by Decaf and those that are not. We then explore if the control and
intervention groups respond differently when they are presented with these. For
CEMs enhanced by Decaf the control and intervention groups experience different
output. The intervention group, using Decaf in enhanced mode, see the enhanced
and raw javac CEMs. The control group, using Decaf in pass-through mode, only
see the raw javac CEMs.

Thus for CEMs not enhanced by Decaf, both groups see the same raw CEMs.
This provides us with an important subgroup within the intervention group, namely
when the intervention group experiences errors generating CEMs not enhanced by
Decaf. We hypothesized that there would be no significant difference between the
control and intervention groups when looking at these cases for which both groups
receive the same raw CEMs. On the other hand, if enhancing CEMs has an effect
on student behavior, we would see a significant difference between the two groups
when looking at errors generating the 30 enhanced CEMs (due to the intervention
group receiving enhanced CEMs and the control group receiving raw CEMs).

4. Results and analysis

We recorded 48,800 errors generating a total of 74 distinct CEMs, including all 30
for which Decaf provides ECEMs (see Table 1). The full list of CEMs generated
is shown in Appendix I. Table 3 shows the total number of errors recorded and
the number of compiler IDs1 for both groups. The intervention group logged 32%
fewer errors than the control group overall. We noted that a number of compiler
IDs generated very few errors, most of these occurring in the first week of the study

1an anonymous integer representing a unique Decaf installation

11

August 19, 2016 Computer Science Education Becker˙2016

Table 3. Profiles of control and intervention

groups. ∗Filtered for inactive Compiler IDs.

Group Number of Number of
errors compiler IDs

Control 29,015 122
Intervention 19,785 120
Total 48,800 242

Control∗ 28,861 108
Intervention∗ 19,628 104
Total∗ 48,489 212

period. This is consistent with the lecturer noting that some students reinstalled
Decaf early on and the fact that when Decaf is reinstalled a new compiler ID is
issued. This is in Section 4.6 as a threat to validity.

We filtered the data removing compiler IDs recording less than an average of 10
errors per week. See Table 3 for the number of recorded errors and compiler IDs
after filtering. This strikes a good balance between removing compiler IDs with
very low activity and retaining those which are the result of a Decaf reinstall,
but generating a representative and useful amount of data. Other studies such as
(Jadud, 2006) filtered their data in similar ways.

For data that can be paired we test for significance with Wilcoxon signed-rank
tests. For unpaired data we employ Mann-Whitney U tests. In all cases we use
two-tail tests and results are considered significant if p < 0.05.

In a previous study (Becker and Mooney, 2016) we analyzed the control group
data using principal component analysis (PCA). We sought to categorize CEMs
by relating them to each other on the basis of how users encounter them. We were
interested in seeing if a students who make errors generating certain CEMs fre-
quently would also have a high likelihood of encountering other identifiable CEMs
with high frequency. Here, before answering our research questions, we use PCA to
gain a view of any differences between our control and intervention groups before
looking at more specific measures of behavior.

PCA is a non-parametric method of reducing a complex data set to reveal hidden,
simplified dynamics within it (Shlens, 2003). PCA is useful for retaining data that
accounts for a high degree of variance, and removing data which does not. PCA
takes as input a set of variables (which may be correlated) and converts them into
a set of linearly uncorrelated principal components (PCs). These principal compo-
nents may then reveal relationships between the original variables. The number of
PCs is less than or equal to the number of original variables, and are ordered in
terms of the fraction of variance each retains. Thus principal component 1 (PC1)
contains the highest variance of all PCs, PC2 the second highest, and so on. The
PCA was performed with the ggbiplot2 function for the R statistical/graphical
programming language.

Figure 4A shows the results of a PCA taking all errors into account. Each data
point represents a student and groups are represented by different colors. The
ellipses are 68% probability confidence ellipses. It can be seen that the intervention
group exhibits less variance in PCs 1 and 2 (those with the most and second most
variance) as it has a smaller confidence ellipse (specifically, both axes are shorter).
In addition, the control group is more widely distributed with more outliers. These

2http://github.com/vqv/ggbiplot

12

http://github.com/vqv/ggbiplot

August 19, 2016 Computer Science Education Becker˙2016

Figure 4. Principal component analysis showing clustering of the control and intervention groups based

on their error profiles. (A) All CEMs. (B) Top 15 CEMs.

outliers may represent students that are struggling more with CEMs.
However, outliers in the data can influence the results of PCA, which is another

reason that inactive students have been filtered from the data, and here the further
step of investigating only errors generating the top 15 CEMs was taken. Again, it is
believed that the data remaining is representative and useful, and that any outliers
that remain are outlying for valid reasons. A PCA of the reduced (Top 15 CEM)
data is shown in Figure 4B. There are three immediate observations to be made:

(1) The group profiles remain very similar.
(2) Individual students do not vary much in terms of relative position within

their groups (labels have been removed from the figures for clarity, but they
are identifiable with the labels turned on).

(3) The variance of the PCs increase substantially (PC1 from 12.4 to 41.1% and
PC2 from 4.8 to 13.8%). Thus for the reduced (15 CEM) data, PCs 1 and 2
account for 54.9% of the variance in each group.

It is important to note when comparing Figure 5A and Figure 5B that the
direction (positive/negative) of the PCs and the resulting correlation with variables
(CEMs) is arbitrary, so for instance the fact that the outlying student beyond
y = −20 in Figure 5A, is located beyond y = 10 in Figure 5B, does not represent
anything of interest in and of itself, as all students have been shifted accordingly
between the figures. It is the relative position of students (and the distinction
between groups) within each figure that is of interest.

Along with having fewer, less distant outliers, it can be inferred that the inter-
vention students are behaving as a more cohesive, homogeneous group. Since the

13

August 19, 2016 Computer Science Education Becker˙2016

PC are linked to the CEMs, we can take the fact that both groups show up dis-
tinctly as evidence that on a group level the control and intervention groups are
interacting with CEMs differently, and that difference is due to the intervention
group experiencing ECEMs.

Having presented the data from an overall perspective demonstrating the dif-
fering profiles of the control and intervention groups, we now seek to answer the
questions forming the aim of this research presented in Section 1.

4.1. Do ECEMs reduce the overall number of errors?

Again, the present study directly distinguishes between raw CEMs and ECEMs,
providing a direct measure of the effects of CEM enhancement. This is achieved by
comparing control and intervention groups for two sets of CEMs—those that are
enhanced by Decaf and those that are not.

Figure 6A shows a strong linear correlation in the number of errors per CEM
between the control and intervention groups both in cases where errors do and
do not have CEMs enhanced. However, a relatively lower number of errors is seen
for the intervention group in the case of enhanced CEMs 6B. It is important to
remember that the control group does not experience enhanced CEMs for these
errors. This is evidence that enhancing CEMs reduced the number of errors that
students make.

The 30 CEMs enhanced by Decaf represent 78.7% of all errors. A Wilcoxon
signed-rank test (two-tail) showed that the number of errors was greater for the
control group (Mdn = 229) than for the intervention group (Mdn = 189), Z =
-3.19, p < 0.001, providing further evidence that ECEMs reduced the number of
errors made by the intervention group.

Figure 7 shows the number of errors generating the 10 most frequent CEMs
enhanced by Decaf for both groups. It can be seen that the number of errors is
lower for the intervention group for all CEMs.

The CEMs not enhanced by Decaf represent 21.3% of all errors, and many of these

Figure 5. Correlation of errors between the control and intervention groups for errors which do not have
CEMs enhanced by Decaf (A) and errors which have CEMs that are enhanced by Decaf (B). Each point
represents one CEM. x - and y-axes show number of errors per CEM, for each group.

14

August 19, 2016 Computer Science Education Becker˙2016

Figure 6. Number of errors per CEM (10 most frequent CEMs enhanced by Decaf).

are infrequent (< 100 errors in either group, accounting for < 10% of non-enhanced
errors). Therefore we selected the 10 most frequent of these CEMs representing over
90% of all errors generating CEMs not enhanced by Decaf. A Wilcoxon signed-
rank test (two-tail) did not show a significant difference between the control and
intervention groups. These results are in line with our hypothesis in Section 3.2. In
the next section we explore the number of errors per student and if the differences
presented here are significant in that context.

4.2. Do ECEMs reduce the number of errors per student?

Table 4 shows the average number of errors and average number of CEMs per stu-
dent for each group. For CEMs enhanced by Decaf the intervention group showed
a significantly lower number of errors per student for the intervention group (Mdn
= 109) compared to control (Mdn = 132), U = 4,691, p = 0.048. This is evidence
that ECEMs reduced the number of errors per student in the intervention group.

Table 4. Average number of errors and CEMs per

student.

Average errors Average CEMs
per student per student

Control 265 20
Intervention 188 16
Overall 228 18

Similar to in Section 4.1, A Mann-Whitney U test (two-tail) showed no significant
difference between control and intervention for CEMs not enhanced by Decaf. This
is evidence that students in both groups were behaving similarly in the absence of
ECEMs.

Becker (2016a) investigated the 15 most frequent CEMs and found that of these,

15

August 19, 2016 Computer Science Education Becker˙2016

Table 5. Details of nine CEMs for which enhancement leads to a statistically significant reduction of

errors per student.

CEM CEM Enhanced Average, Average, Mann-Whitney
number description by Decaf? Median Median U test (two-tail)

(Control) (Intervention)

32 class, interface, enum1 Yes 9.9, 6.0 5.2, 3.0 U = 3740, p = 0.001
74 not a statement Yes 21.0, 10.0 10.7, 6.0 U = 3968, p = 0.003
57 incompatible types2 Yes 9.5, 5.0 5.3, 2.5 U = 4012, p = 0.005
5 ‘.class’ expected No 5.1, 2.0 4.2, 0.0 U = 4034, p = 0.006
24 cannot find symbol Yes 44.9, 35.0 33.0, 25.5 U = 4148, p = 0.012
1 ‘(’ expected Yes 5.0, 2.0 2.9, 1.0 U = 4245, p = 0.023
12 <identifier> expected Yes 10.5, 4.0 4.5, 2.0 U = 4330, p = 0.038
51 illegal start of expression Yes 17.9, 9.5 13.4, 7.0 U = 4347, p = 0.042
92 variable already defined3 Yes 7.3, 4.0 5.0, 3.0 U = 4351, p = 0.043

1class, interface, or enum expected
2incompatible types OR incompatible types: *type* cannot be converted to *type*
3variable *variable name* is already defined in method *method name*

nine had a statistically significant reduction in the number of errors per student.
These are presented in Table 5. Of these nine CEMs, all but one are enhanced by
Decaf. This is an important finding. Only one recent study (Denny et al., 2014)
investigated individual errors and reported no significant results for the three in-
vestigated: cannot resolve identifier (CEM 12), type mismatch (CEM 57), and ;
expected (CEM 7). Although we did not find a significant difference for CEM 7,
we did for CEMs 12 and 57. The fact that an insignificant difference for CEM 7
was found in both studies is somewhat expected, as this unenhanced javac CEM
is particularly straightforward.

CEM 5, which has a statistically significant difference, but is not enhanced by
Decaf, is ‘.class’ expected. There are several possible explanations for this. First, it
could be a false positive. Second, there could be a genuine reason that interven-
tion students committed this error with a lower frequency—perhaps a pedagogical
difference between the semesters, although significant efforts were made to avoid
any. Third, it is not known if helping students by enhancing some CEMs has a
‘knock-on’ effect of helping with errors generating other CEMs (which are not
enhanced).

Program 2 defines an empty method on line 6, which is called by the main
method on line 4. If this line is changed from go(a, b); to go(int a, b);, CEM
5 ‘.class’ expected is generated. This is because the type of the method parameter is
already known. If go(int x, int y) on line 6 is changed to go(int x, y), CEM
12 <identifier> expected is generated because no type is given for y. This CEM
is enhanced by Decaf and does have a significant reduction for the intervention
group. Table 6 summarizes this example.

Program 2. Java program exemplifying <identifier> expected

and ‘.class’ expected CEMs.

1 public class Test{
2 public static void main(String[] args){
3 int a = 1, b = 2;
4 go(a, b);
5 }
6 public static void go(int x, int y){
7 }
8 }

16

August 19, 2016 Computer Science Education Becker˙2016

Table 6. Comparison of <identifier> expected and ‘.class’ expected CEMs. Line num-

bers and code correspond to Program 2.

Code Comment CEM Enhanced by Decaf?

go(a, b) Correct (line 4) - -
go(int a, b) Error (line 4) 5 ‘.class’ expected No
go(int x, int y) Correct (line 6) - -
go(int x, y) Error (line 6) 12 <identifier> expected Yes

Given the similarities between how these two errors are generated, it would not
be entirely unreasonable to find that helping students with CEM 12 has a knock-on
effect of helping them with CEM 5. Both errors can occur due to incorrectly stating
(or not stating) the types of method arguments/parameters, in calling (line 4) or
defining (line 6) a method. However these CEMs can arise in different situations
and a full investigation of this potential knock-on effect is beyond the scope of the
present work.

4.3. Do ECEMs reduce the incidence of repeated errors?

It is important to note that the number of errors a student commits is not a
guaranteed measure the student is struggling, although a high number of errors
is certainly an indication that something may be wrong. For repeated errors it
is a different situation. Jadud (2006) found that how often errors are repeated
is one of the best indicators of how well (or poorly) a student was progressing.
Other studies have also focused on the incidence of repeated errors and what they
say about student behavior and performance (Ahadi et al., 2015; Watson, Li, and
Godwin, 2013).

In this study, a student is said to have committed a repeated error when two
consecutive compilations result in the same CEM and originate from an error on
the same line of code. Only the first CEM reported by javac is used in calcu-
lating repeated errors, and the method is the same for both groups. A repeated
error string is an occurrence of at least one repeated error—it could be more than
one—provided the repeated errors themselves are consecutive with no other events
between them. Such a string ends when a different CEM is encountered or a dif-
ferent line of code causes the same CEM (each indicating that the original error
was resolved). Figure 7 shows the number of repeated error strings per student (by
group) for the top 15 CEMs. A Mann-Whitney U test (two-tail) showed that the
number of strings per student was greater for the control group (Mdn = 37) than
for the intervention group (Mdn = 27, U = 6437, p = 0.012). Note that this data
is not paired—each line in Figure 7 represents a succession of all students in each
group, ordered in decreasing number of repeated error strings. This shows that
more control students had more repeated error strings and were therefore more
likely to be struggling.

This reduction in the number of repeated error strings led to the development
of a new metric for quantifying repeated errors called the Repeated Error Density
(RED) (Becker, 2016b). It was found using the data from this study that enhancing
CEMs results in a statistically significant reduction in RED and Jadud’s error
quotient (Jadud, 2006), providing further evidence that enhancing CEMs reduces
the number of repeated errors.

Figure 8 shows the number of repeated errors per CEM for the top 15 CEMs
representing 86.3% of all errors. A Wilcoxon signed-rank test (two-tail) showed

17

August 19, 2016 Computer Science Education Becker˙2016

Figure 7. Number of repeated error strings per student (top 15 CEMs).

Figure 8. Number of repeated errors per CEM (top 15 CEMs).

that the number of errors was greater for the control group (Mdn = 742) than for
the intervention group (Mdn = 416); Z = -2.90, p = 0.004. The only CEM with
a higher number of repeated errors for the intervention group was CEM 39 else
without if. This was also the only CEM in the top 15 with a higher number of
(overall) errors for the intervention group, and one of the three top-15 CEMs that
are not enhanced by Decaf. However in the case of this CEM, this difference was
not found to be significant. Additionally, the number of errors for CEM 7 ; expected
was nearly the same for each group. The straightforward nature of this particular
unenhanced CEM is a possible explanation for this, as discussed in Section 4.2.

18

August 19, 2016 Computer Science Education Becker˙2016

4.4. Do students find ECEMs beneficial?

At the end of each semester students were presented with a short optional and
anonymous survey relating to their experience using Decaf. The survey was com-
prised of a number of Likert questions, each with an optional open-ended field
asking “Please explain (optional)”. An independent-samples t-test (two-tail) was
conducted for each Likert question. The response rate was approximately 32% for
the intervention group and 20% for the control group. It is interesting to note
that for the intervention group, an average of 28% of the optional comments were
completed compared to 7% for the control group. This is one indication that the
intervention group was more engaged with their learning.

When asked “How much of a barrier to progress do you feel compiler errors
are?” students in the intervention group were significantly more likely to report that
compiler errors presented less of a barrier to progress than the control group (Figure
S1). When asked “How frustrating do you find compiler errors?” the intervention
group found compiler errors significantly less frustrating than the control group
(Figure S2). This is encouraging, particularly as the intervention students were
being presented with both the javac CEMs as well as the Decaf ECEMs, and
we had an additional concern that students might find being presented with two
versions of the same error messages confusing or frustrating. However this does
not appear to have been the case. The full survey results can be found in (Becker,
2015).

4.5. Basis for generalization

In this section we analyze the control group and compare it to groups from several
other studies on Java and other languages. This is with a view to providing a case
for generalizing these results to other groups of students, languages, etc.

The 10 most frequent CEMs recorded in the control group represented 73% of
all control errors. These CEMs are similar to those in five other previous studies of
CEMs in Java (Table 7). The top 10 CEMs from this study share six CEMs with
the top 10 of Brown et al. (2014) and Jackson, Cobb, and Carver (2005), five with
Tabanao et al. (2011) and Dy and Rodrigo (2010), and four with (Jadud, 2006).
Despite spanning 10 years and most likely four Java versions, this indicates that
the students in the control group of this study are generating very similar errors to
students in the other studies. Figure 9 shows the distributions of the top 10 CEMs
in all six studies.

Having established that our control group is similar to other studies featuring
Java with the motivation of demonstrating that generalization to other Java studies
is a potential, we sought evidence for which generalization to other languages is
a possibility. Jadud noticed that the top Java errors he collected had a similar
distribution to five studies using other languages (Jadud, 2006). Inspired by this
analysis, Figure 10 shows the frequency of the nine most frequent errors from this
study’s control group and those from three languages Jadud reported on: Haskell
(Heeren, Leijen, and van IJzendoorn, 2003); FORTRAN (Moulton and Muller,
1967); and COBOL (Litecky and Davis, 1976), as well as the most recent study on
Java (Brown et al., 2014).

The errors at each rank are different as the languages are different, with the
exception of some of the Java errors (see Table 7), and there is no way of easily

19

August 19, 2016 Computer Science Education Becker˙2016

Table 7. Top 10 CEMs from this study (control group) and five other Java studies: A (Brown et al., 2014); B

(Jackson et al., 2005); C (Tabanao et al., 2011); D (Dy and Rodrigo, 2010); and E (Jadud, 2006).

% of all errors
Error Control group A B C D E

(this study)

cannot find symbol* 16 17.7** 14.6 ∼18** 18.9** 16.7**
‘)’ expected 11.5 6.5† 3.8 ∼10† 9.6† 10.3†
‘;’ expected 10.7 9.5 8.5 ∼12 11.7 10
not a statement 7.4 3 2.5
illegal start of expression 6.3 4.4 5.7 ∼5 5.2 5
reached end of file while parsing 4.9
illegal start of type 4.6
‘else’ without ‘if’ 4
bad operand types for binary operator 3.9
<identifier expected> 3.8 3.6 4.5 ∼9 3.7

% Total 73 65.8 51.8 ∼69 79.9 71.9
Total errors 28,860 > 5× 106 559,419 24,151 ∼14,500 ∼70,000

∗Some studies broke this CEM down into: unknown variable, unknown method, unknown class, and unknown
symbol. As the students in this study had not yet studied methods or classes, it is reasonable to assume that most
cannot find symbol errors were actually cannot find symbol - variable errors. Manually looking at many of these
errors in the data supports this.

∗∗unknown variable or cannot find symbol - variable (See ∗ above).

†bracket expected.

Figure 9. Percent frequency of the 10 most frequent Java CEMs from this study (control group) and five
other studies. In each group the left-most bar represents the most frequent CEM and the right-most, the

10th most frequent.

evaluating why this distribution is common across so many languages3. Jadud
does posit two possible reasons: the programmer and the grammar. If indeed the
reason is programmer behavior, it would support the idea that the students in this
study are not only similar to those in other studies involving Java, but to those
involving many other languages as well. This would be important in generalizing
the methods and results of this study. Similarly, if this commonality is due to
the grammar of the languages, it could be taken as evidence that results for one
language could potentially be generalized to others, with obvious complications
involving systematically and reliably generalizing errors in one language to another.

3See Jadud (2006), p. 69 for a more thorough discussion.

20

August 19, 2016 Computer Science Education Becker˙2016

Figure 10. Frequency of the 9 most frequent errors from four different languages.

4.6. Threats to validity

Attempts were made to make all environmental and pedagogical factors as similar
as possible across the two years of the study. Students learned the same topics
in as similar a manner as possible, with the same lecturer, material, labs and en-
vironment. Nonetheless some factors could not be controlled such as scheduling
differences, room availability and external pressures on students from other mod-
ules.

A more technical threat to validity is the fact that a new anonymous compiler
ID is issued when Decaf is reinstalled, perhaps by the same student on the same
computer, or by one student on multiple computers. This creates an issue in not
having a perfect one to one mapping of compiler IDs to students. It is believed that
this did not impact the results to a large extent for two reasons. First, the number
of compiler IDs was not much above the average attendance and the average num-
ber of students submitting lab exercises. Second, filtering data to remove inactive
compiler IDs brought the number of compiler IDs closer to the expected numbers,
and the students in the control group had a similar error profile to students in
other studies. Related to the threat just mentioned, students were encouraged to
only use Decaf. However, students could choose to use another environment, or
use Decaf and another environment concurrently, although the lecturer noted very
little evidence of this.

A minor issue is that Decaf does not enhance three of the top 15 CEMs: 39
‘else’ without ‘if ’, 53 illegal start of type, and 5 ‘.class’ expected. This however did
provide another interesting self-contained control case which spanned both groups.
As both groups experienced the same raw Java CEMs in these cases, it would be
expected that there would be little variation in their frequencies. Indeed for one of
these (CEM 39) Decaf had only a slightly higher frequency, and for CEMs 53 and
5, the frequencies were almost equivalent. For all of the other top 15 CEMs, the
number of errors was lower for the control group. Additionally, CEM 5 provided
an opportunity to briefly explore the possibility of a knock-on effect of ECEMs
(Section 4.2).

The Decaf software was designed before the publication of Denny et al. (2014),
and shares with their research a threat to validity in that the control students
were presented with more than one CEM which may confuse some students and

21

August 19, 2016 Computer Science Education Becker˙2016

potentially allow others to correct more than one error simultaneously. This is a
direct effect of the design decision of not to interfere with the standard Java CEM
presentation in any way for the control group.

In enhanced mode, the original Java CEM is presented unaltered, alongside an
ECEM (if one is generated) to the intervention group (however, unlike some other
studies, no other information (such as example code) that could lead to validity
issues is presented). Being presented with both messages side by side could poten-
tially lead to student confusion because they are being presented with two versions
of a single compiler error message. However, the results of survey questions (par-
ticularly open-ended responses) did not show any evidence of this.

5. Conclusion

There are many difficulties faced by students learning to program, and few (if any)
are as persistent and universally experienced as those in interpreting compiler error
messages (CEMs). These difficulties have been documented in the literature for at
least four decades and occur with almost all programming languages. These CEMs
are extremely important as the student’s primary source of information on their
work, providing instant feedback intended to help students locate, diagnose and
correct their own errors, often made just seconds before. Unfortunately they are
often less than helpful. Terse, confusing, too numerous, misleading, and sometimes
seemingly wrong, they become sources of frustration and discouragement.

This paper presented the results of an in-depth empirical investigation on the
effects of a Java editor called Decaf, specifically written for this research. Decaf
features enhanced CEMs (ECEMs) intended to be more understandable and helpful
than those provided by the compiler. Only a few systems providing ECEMs exist,
and there are even fewer in-depth empirical studies on ECEM effectiveness (Denny
et al., 2014).

The aim of this research was to investigate the questions:

(1) Do enhanced compiler error messages reduce the overall number of errors?
(2) Do enhanced compiler error messages reduce the number of errors per stu-

dent?
(3) Do enhanced compiler error messages reduce the incidence of repeated errors?
(4) Do students find enhanced compiler error messages beneficial?

Two groups were investigated during their semester 1 CS1 module, a control
group experiencing standard Java CEMs and an intervention group experiencing
ECEMs. Each group consisted of approximately 100 students and together they
generated nearly 50,000 errors. The control group was shown to have an error distri-
bution very similar to several other studies on Java and other languages, providing
a baseline and grounds for generalization. It was found through several angles of
analysis, that the overall number of errors was significantly reduced for the inter-
vention group. Perhaps more importantly, the number of errors per student was
reduced, particularly for high frequency errors. Nine CEMs were identified (eight
enhanced by Decaf), accounting for 43.2% of all errors, which had a significantly re-
duced number of errors per student. These errors are amongst the most commonly
encountered by students in several other studies.

The number of repeated errors, a key metric in identifying struggling students,
was also reduced in addition to the number of repeated error strings. This supports

22

August 19, 2016 Computer Science Education Becker˙2016

previous work showing a reduction in the EQ and RED metrics (Becker, 2016b).
The data was also analyzed from a group perspective using principal component
analysis, finding that both groups had distinct profiles. The intervention group
exhibited less variance with a more homogeneous error profile than the control
group.

Feedback from students involved in this study showed a positive learning ex-
perience with ECEMs. Students that experienced ECEMs reported that compiler
errors were not as significant a barrier to progress as those that only experienced
the raw CEMs, and students that experienced ECEMs felt that compiler errors
were less frustrating than those that only experienced the raw CEMs.

5.1. Future research directions

At some point in the future Java may be replaced as the most common language
for novice instruction, with Python as a top contender. Although this will bring
change, the fact remains that several popular novice teaching languages have come
and gone over more than four decades, but the difficulties presented by CEMs
have persisted. This makes it seem unlikely that the problems students encounter
with CEMs will be alleviated in the short-term by a language change alone. In
addition, the manner in which data about the problem is gathered will continue to
change. Error detection and aggregation is getting increasingly sophisticated. The
Blackbox dataset introduced by Brown et al. (2014) contains millions of errors,
and has already been used to analyze 37 million of them, from hundreds of thou-
sands of students over at least several hundred institutions (Altadmri and Brown,
2015). However studies like the present one, closer to the students involved than
global studies like Blackbox, will remain extremely important in determining how
to improve student success in programming.

A solution, if there ever is one, will come first from one of three likely sources.
The first is language designers themselves, through languages which by nature
are less prone to errors rooted in complex syntax and semantics. The second is
compiler designers, who have the possibility of discovering and deciphering error
causes differently and presenting more useful CEMs to programmers so they can
rectify them more effectively. An example is Eclipse which has a custom Java
compiler with its own CEMs, which in some cases are arguably better than those
of javac (Ben-Ari, 2007). The third are designers of editors and environments such
as Decaf—tools which interpret and address the problems presented by CEMs, most
likely through enhancement. Ultimately the solution will probably be a combination
of efforts from language, compiler and editor designers in concert. Nonetheless,
existing languages already exist and already have their flaws. These languages are
immensely popular, running the software that the modern world depends on. In
addition, there will always be languages with CEMs more notorious than others,
and therefore a likely need for enhanced CEMs.

Directions for future work follow two avenues. The first is further into the data
already gathered by applying the rubric of Marceau et al. (2011a) designed to
identify specific error messages that are problematic for students. Although the
present research identified specific error messages, these were based on frequency,
not analyzing the actual issues students encountered when they committed par-
ticular errors. The second direction is a new and improved editor that will take
into account lessons learned here. A web-based editor is envisioned, requiring no
download or installation of software. This will provide scope for future study by

23

August 19, 2016 Computer Science Education Becker˙2016

including more institutions, greater student diversity, and a greater overall number
of participants.

It is perhaps unreasonable to think that enhancing compiler error messages will
completely alleviate the problems students have with them. However it has been
shown that Decaf reduced student errors, reduced indications of struggling stu-
dents, and provided a positive learning experience. It is hoped that the results of
this work and those to come will help in providing assistance in one of the many
hurdles computer programming students face in learning an extremely important
skill.

Supplemental material

Table S1 Most frequent Java compiler error messages and errors from eleven stud-
ies.

Figure S1 Student feedback: How much of a barrier to progress do you feel compiler
errors are?

Figure S2 Student feedback: How frustrating do you find compiler errors?

References

Ahadi, A., Lister, R., Haapala, H., and Vihavainen, A. (2015). Exploring machine learning
methods to automatically identify students in need of assistance. In Proceedings of
the Eleventh Annual International Conference on International Computing Education
Research, pages 121–130. ACM.

Altadmri, A. and Brown, N. C. (2015). 37 million compilations: Investigating novice pro-
gramming mistakes in large-scale student data. In Proceedings of the 46th ACM Tech-
nical Symposium on Computer Science Education, pages 522–527. ACM.

Becker, B. A. (2015). An Exploration of the Effects of Enhanced Compiler Error Messages
for Computer Programming Novices. Master’s thesis, Dublin Institute of Technology.

Becker, B. A. (2016a). An effective approach to enhancing compiler error messages. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education,
pages 126–131. ACM.

Becker, B. A. (2016b). A new metric to quantify repeated compiler errors for novice pro-
grammers. In Proceedings of the 21st Annual Conference on Innovation and Technology
in Computer Science Education, pages 296–301. ACM.

Becker, B. A. and Mooney, C. (2016). Categorizing compiler error messages with principal
component analysis. In Proceedings of the 12th China - Europe International Symposium
on Software Engineering Education.

Ben-Ari, M. M. (2007). Compile and runtime errors in Java. http://introcs.cs.

princeton.edu/11cheatsheet/errors.pdf.
Bennedsen, J. and Caspersen, M. E. (2007). Failure rates in introductory programming.

ACM SIGCSE Bulletin, 39(2), 32–36.
Bergin, J., Agarwal, A., and Agarwal, K. (2003). Some deficiencies of C++ in teaching

CS1 and CS2. ACM SIGPlan Notices, 38(6), 9–13.
Bergin, S. and Reilly, R. (2005). Programming: factors that influence success. ACM

SIGCSE Bulletin, 37(1), 411–415.
Brown, N. C. C., Kölling, M., McCall, D., and Utting, I. (2014). Blackbox: A large scale

24

http://introcs.cs.princeton.edu/11cheatsheet/errors.pdf
http://introcs.cs.princeton.edu/11cheatsheet/errors.pdf

August 19, 2016 Computer Science Education Becker˙2016

repository of novice programmers’ activity. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, pages 223–228. ACM.

Brown, P. J. (1983). Error messages: the neglected area of the man/machine interface.
Communications of the ACM , 26(4), 246–249.

Burgess, M. (1999). C programming tutorial 4th edition (k&r version).
http://markburgess.org/CTutorial/C-Tut-4.02.pdf.

Caspersen, M. E. and Bennedsen, J. (2007). Instructional design of a programming course:
a learning theoretic approach. In Proceedings of the Third International Workshop on
Computing Education Research, pages 111–122. ACM.

Cass, S. (2015). The 2015 top ten programming languages. http://spectrum.ieee.org/
computing/software/the-2015-top-ten-programming-languages.

Chamillard, A. and Hobart Jr, W. C. (1997). Transitioning to Ada in an introductory
course for non-majors. In Proceedings of the Conference on TRI-Ada’97 , pages 37–40.
ACM.

Coull, N. J. (2008). SNOOPIE: development of a learning support tool for novice program-
mers within a conceptual framework . Ph.D. thesis, University of St Andrews.

Davies, S., Polack-Wahl, J. A., and Anewalt, K. (2011). A snapshot of current practices
in teaching the introductory programming sequence. In Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education, pages 625–630. ACM.

Denny, P., Luxton-Reilly, A., Tempero, E., and Hendrickx, J. (2011). Codewrite: supporting
student-driven practice of java. In Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education, pages 471–476. ACM.

Denny, P., Luxton-Reilly, A., and Carpenter, D. (2014). Enhancing syntax error messages
appears ineffectual. In Proceedings of the 19th ACM annual Conference on Innovation
and Technology in Computer Science Education, pages 273–278. ACM.

Dy, T. and Rodrigo, M. M. (2010). A detector for non-literal Java errors. In Proceedings
of the 10th Koli Calling International Conference on Computing Education Research,
pages 118–122. ACM.

Farragher, L. and Dobson, S. (2000). Java decaffeinated: experiences building a program-
ming language from components. Technical report, Trinity College Dublin, Department
of Computer Science.

Flowers, T., Carver, C. A., and Jackson, J. (2004). Empowering students and building
confidence in novice programmers through gauntlet. In Frontiers in Education, 2004.
FIE 2004. 34th Annual , pages T3H–10. IEEE.

Guo, P. (2014). Python is now the most popular introductory teaching language at top us
universities. http://cacm.acm.org/blogs/blog-cacm/.

Guzdial, M. (2011). Predictions on future CS1 languages. https://computinged.

wordpress.com/2011/01/24/predictions-on-future-cs1-languages/.
Hagan, D. and Markham, S. (2000). Teaching Java with the BlueJ environment. In

Proceedings of the Australasian Society for Computers in Learning in Tertiary Education
Conference.

Hartmann, B., MacDougall, D., Brandt, J., and Klemmer, S. R. (2010). What would other
programmers do: suggesting solutions to error messages. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1019–1028. ACM.

Heeren, B., Leijen, D., and van IJzendoorn, A. (2003). Helium, for learning Haskell. In
Proceedings of the 2003 ACM SIGPLAN workshop on Haskell , pages 62–71. ACM.

Hristova, M., Misra, A., Rutter, M., and Mercuri, R. (2003). Identifying and correcting
Java programming errors for introductory computer science students. In ACM SIGCSE
Bulletin, volume 35, pages 153–156. ACM.

Hsia, J. I., Simpson, E., Smith, D., and Cartwright, R. (2005). Taming Java for the
classroom. In ACM SIGCSE Bulletin, volume 37, pages 327–331. ACM.

Jackson, J., Cobb, M., and Carver, C. (2005). Identifying top Java errors for novice
programmers. In Proceedings of the 35th Annual Frontiers in Education Conference,
pages T4C24–T4C27. IEEE.

25

http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
http://cacm.acm.org/blogs/blog-cacm/
https://computinged.wordpress.com/2011/01/24/predictions-on-future-cs1-languages/
https://computinged.wordpress.com/2011/01/24/predictions-on-future-cs1-languages/

August 19, 2016 Computer Science Education Becker˙2016

Jadud, M. C. (2005). A first look at novice compilation behaviour using BlueJ. Computer
Science Education, 15(1), 25–40.

Jadud, M. C. (2006). An exploration of novice compilation behaviour in BlueJ . Ph.D.
thesis, University of Kent.

Kelleher, C. and Pausch, R. (2005). Lowering the barriers to programming: A taxonomy
of programming environments and languages for novice programmers. ACM Computing
Surveys (CSUR), 37(2), 83–137.

Kölling, M. (1999). The design of an object-oriented environment and language for teach-
ing . Ph.D. thesis, Department of Computer Science, University of Sydney.

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J. (2003). The BlueJ system and its
pedagogy. Computer Science Education, 13(4), 249–268.

Kummerfeld, S. K. and Kay, J. (2003). The neglected battle fields of syntax errors. In
Proceedings of the Fifth Australasian conference on Computing Education, pages 105–
111. Australian Computer Society, Inc.

Lang, B. (2002). Teaching new programmers: a Java tool set as a student teaching aid. In
Proceedings of the inaugural conference on the Principles and Practice of programming,
2002 and Proceedings of the second workshop on Intermediate Representation Engineer-
ing for Virtual Machines, 2002 , pages 95–100. National University of Ireland.

Liston, M., Frawley, D., and Patterson, V. (2016). A study of progres-
sion in Irish higher education 2012/13 to 2013/14: A report by the Higher
Education Authority (Ireland). http://hea.ie/sites/default/files/

hea-progression-irish-higher-education_final.pdf, ISBN 1-905135-46-7.
Litecky, C. R. and Davis, G. B. (1976). A study of errors, error-proneness, and error

diagnosis in COBOL. Communications of the ACM , 19(1), 33–38.
Marceau, G., Fisler, K., and Krishnamurthi, S. (2011a). Measuring the effectiveness of error

messages designed for novice programmers. In Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, pages 499–504. ACM.

Marceau, G., Fisler, K., and Krishnamurthi, S. (2011b). Mind your language: on novices’
interactions with error messages. In Proceedings of the 10th SIGPLAN Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software, pages 3–18.
ACM.

Matth́ıasdóttir, Á. and Geirsson, H. J. (2011). The novice problem in computer science. In
Proceedings of the 12th International Conference on Computer Systems and Technolo-
gies, pages 570–576. ACM.

McCall, D. and Kölling, M. (2014). Meaningful categorisation of novice programmer errors.
In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pages 1–8. IEEE.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., Laxer,
C., Thomas, L., Utting, I., and Wilusz, T. (2001). A multi-national, multi-institutional
study of assessment of programming skills of first-year CS students. ACM SIGCSE
Bulletin, 33(4), 125–180.

Moskal, B. and Lurie, D. (2004). Evaluating the effectiveness of a new instructional ap-
proach. In Proceedings of the 35th ACM Technical Symposium on Computer Science
Education, pages 75–79. ACM.

Motil, J. and Epstein, D. (n.d.). JJ: a language designed for beginners. http://www.ecs.
csun.edu/~jmotil/TeachingWithJJ.pdf.

Moulton, P. and Muller, M. (1967). Ditran - a compiler emphasizing diagnostics. Com-
munications of the ACM , 10(1), 45–52.

Murphy, C., Kim, E., Kaiser, G., and Cannon, A. (2008). Backstop: a tool for debugging
runtime errors. ACM SIGCSE Bulletin, 40(1), 173–177.

Nielsen, J. (1994). Heuristic evaluation. In Usability inspection methods, volume 17, pages
25–62.

Orsini, L. (2013). Why programming is the core skill of the 21st century. http:

//readwrite.com/2013/05/31/programming-core-skill-21st-century.
Pane, J. and Myers, B. (1996). Usability issues in the design of novice programming

26

http://hea.ie/sites/default/files/hea-progression-irish-higher-education_final.pdf
http://hea.ie/sites/default/files/hea-progression-irish-higher-education_final.pdf
http://www.ecs.csun.edu/~jmotil/TeachingWithJJ.pdf
http://www.ecs.csun.edu/~jmotil/TeachingWithJJ.pdf
http://readwrite.com/2013/05/31/programming-core-skill-21st-century
http://readwrite.com/2013/05/31/programming-core-skill-21st-century

August 19, 2016 Computer Science Education Becker˙2016

systems. Technical report, Carnegie Mellon University.
Porter, L., Guzdial, M., McDowell, C., and Simon, B. (2013). Success in introductory

programming: What works? Communications of the ACM , 56(8), 34–36.
Rey, J. S. (2009). From Alice to BlueJ: a transition to Java. Master’s thesis, Robert

Gordon University.
Rodrigo, M. M. T., Baker, R. S., Jadud, M. C., Amarra, A. C. M., Dy, T., Espejo-Lahoz, M.

B. V., Lim, S. A. L., Pascua, S. A., Sugay, J. O., and Tabanao, E. S. (2009). Affective and
behavioral predictors of novice programmer achievement. In ACM SIGCSE Bulletin,
volume 41, pages 156–160. ACM.

Schäfer, A., Holz, J., Leonhardt, T., Schroeder, U., Brauner, P., and Ziefle, M. (2013). From
boring to scoring–a collaborative serious game for learning and practicing mathematical
logic for computer science education. Computer Science Education, 23(2), 87–111.

Schorsch, T. (1995). CAP: an automated self-assessment tool to check Pascal programs
for syntax, logic and style errors. In ACM SIGCSE Bulletin, volume 27, pages 168–172.
ACM.

Shlens, J. (2003). A tutorial on principal component analysis: derivation, discussion,
and singular value decomposition. https://www.cs.princeton.edu/picasso/mats/

PCA-Tutorial-Intuition_jp.pdf.
Siegfried, R. M., Chays, D., and Herbert, K. (2008). Will there ever be consensus on CS1?

In FECS , pages 18–23.
Siegfried, R. M., Greco, D., Miceli, N., and Siegfried, J. (2012). Whatever happened to

Richard Reid’s list of first programming languages? Information Systems Education
Journal , 10(4), 24.

Sloan, R. H. and Troy, P. (2008). Cs 0.5: a better approach to introductory computer
science for majors. ACM SIGCSE Bulletin, 40(1), 271–275.

Tabanao, E. S., Rodrigo, M. M. T., and Jadud, M. C. (2011). Predicting at-risk novice
Java programmers through the analysis of online protocols. In Proceedings of the Seventh
International Workshop on Computing Education Research, pages 85–92. ACM.

Thompson, S. M. (2004). An exploratory study of novice programming experiences and
errors. Ph.D. thesis, University of Victoria.

TIOBE (2016). TIOBE index for May 2016. http://www.tiobe.com/tiobe_index.
Toomey, W. and Gjengset, J. (July, 2011). Arjen: A tool to identify common programming

errors. http://minnie.tuhs.org/Programs/Arjen/.
Traver, V. J. (2010). On compiler error messages: what they say and what they mean.

Advances in Human-Computer Interaction.
Watson, C., Li, F. W., and Godwin, J. L. (2013). Predicting performance in an intro-

ductory programming course by logging and analyzing student programming behavior.
In Advanced Learning Technologies (ICALT), 2013 IEEE 13th International Conference
on, pages 319–323. IEEE.

Yadin, A. (2011). Reducing the dropout rate in an introductory programming course.
ACM inroads, 2(4), 71–76.

27

https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
http://www.tiobe.com/tiobe_index
http://minnie.tuhs.org/Programs/Arjen/

August 19, 2016 Computer Science Education Becker˙2016

Appendix I

All CEMs recorded during study. Gaps in numbering are due to CEMs included in software but not recorded in results.

CEM Enhanced CEM
number by Decaf? description

1 yes ‘(’ expected
2 yes ‘(’ or ’[’ expected
3 yes ‘)’ expected
4 yes ‘.’ expected
5 no ‘.class’ expected
6 no : expected
7 yes ‘;’ expected
8 yes ‘[’ expected
9 yes ‘]’ expected
10 yes ‘{’ expected
11 yes ‘}’ expected
12 yes <identifier> expected
13 no > expected
14 no > expected
15 no array dimension missing
16 yes array required, but *type* found
19 yes bad operand type *type name* for unary operator ’*operator*’
20 yes bad operand types for binary operator ’*operator*’
22 no break outside switch or loop
23 no cannot assign a variable to final variable *variable name*
24 yes cannot find symbol
25 no cannot return a value from method whose result type is void
27 no ‘catch’ without ‘try’
29 yes class *class name* is public, should be declared in a file named *class name*.java
31 no class expected
32 yes class, interface, or enum expected
34 no constructor *constructor name* in class *class name* cannot be applied to given types
36 no double cannot be dereferenced
38 no duplicate class: *class name*
39 no ‘else’ without ‘if’
40 no empty character literal
43 no exception *exception name* is never thrown in body of corresponding try statement
46 no illegal ‘.’
47 yes illegal character: ‘*character*’
48 no illegal escape character
49 no illegal initializer for *type*
50 no illegal line end in character literal
51 yes illegal start of expression
52 no illegal start of statement
53 no illegal start of type
54 no illegal static declaration in inner class *class name*
55 no illegal underscore
56 no incomparable types: *type* and *type*
57 yes incompatible types: *type* cannot be converted to *type*
58 no inconvertible types
59 no *type* cannot be dereferenced
60 no integer number too large: *value*
61 yes invalid method declaration; return type required
63 no malformed floating point literal
64 no method *method name* in class *class name* cannot be applied to given types
65 no method *method name* is already defined in class *class name*
66 no missing method body, or declare abstract
67 yes missing return statement
69 no modifier static not allowed here
70 no no suitable constructor found for *method name*
71 no no suitable method found for *method name*
72 no non-static method *method name* cannot be referenced from a static context
73 yes non-static variable *variable name* cannot be referenced from a static context
74 yes not a statement
77 yes package *package name* does not exist
78 yes possible loss of precision
79 no reached end of file while parsing
81 no repeated modifier
83 yes ‘try’ without ‘catch’, ‘finally’ or resource declarations
85 no unclosed character literal
86 yes unclosed comment
87 no unclosed string literal
89 yes unexpected type
90 no unreachable statement
91 yes unreported exception *exception type*; must be caught or declared to be thrown
92 yes variable *variable name* is already defined in method *method name*
93 no variable *variable name* might not have been initialized
94 no ‘void’ type not allowed here
95 no while expected

28

